数据分类分级-敏感图片识别

本文探讨了在数字化背景下,企业如何保护敏感的证件、票据图像,提出利用图片检索和几何验证技术,通过原创解决方案实现高精度且合法合规的敏感图片识别,展示了九智汇平台的应用实例。

背景

在数字化时代的浪潮下,企业对保护敏感图像信息的需求已变得迫在眉睫。诸如证件照片和票据等纸质文件的扫描版本携带着个人隐私和关键的商业信息,一旦这些信息遭到泄露或滥用,都可能对企业和个人造成严重的风险和损失。因此,确保这些图像的安全性和机密性已经成为数据安全和数据合规工作的核心焦点。

然而,如何有效识别这些敏感图像却是一项复杂且充满挑战的任务。首先,企业需要确保敏感图片识别与保护技术的可靠性和准确性,以避免误判和遗漏。但是,事先开发的模型很难覆盖所有的敏感图像类别,如果在使用过程中不断引入新的敏感图像类别,同时更新和优化模型,这无疑显著地增加了使用和维护成本。何况除了通用的敏感图像类别之外,企业还可能拥有特定的敏感数据类别,这些企业特有的数据是无法通过公开渠道获取的。此外,在模型训练过程中,确保敏感图像的收集和数据处理流程合法且合规,这也是需要特别注意的地方。

本文将介绍我们在证件、票据类敏感图片识别中的一些洞察,以及对上述问题的原创性的解决方案,以帮助企业合法合规、低成本的解决敏感图片识别的难题。在本文第二部分,我们将回顾一些相关的机器视觉(CV)技术。第三部分我们将介绍我们的做法以及达到的效果。

分析

当遇到难题时,最好的做法是看看已有的技术以及他们解决了什么问题,并试图将我们遇到的难题转化成已解决的问题或者他们的组合。

在证件、票据类敏感图片识别中,遇到的最大挑战是类别的不确定性。这个问题其实非常地常见,通常会使用度量学习(Metric Learning)的技术来解决。其中,大家最常见的就是人脸识别任务了,以手机或门禁为例,显然系统不可能预先知道使用者是谁。因此,要使用人脸解锁,需要先使用者配合采集多张脸部图像,解锁时则只需配合让摄像头拍摄到正脸图片即可。其核心的工作原理如下:录入过程中,系统将多个角度的人脸图片使用深度神经网络提取的特征进行融合并存储,而在使用过程中,系统再次使用深度神经网络提取人脸特征,并与存储的特征进行比对,达到一定相似度即可。开发者则使用度量学习的技术训练好用于人脸特征提取的神经网络,来保证产品的核心功能正常运作。

类似的,如果我们训练一个能很好的提取证件、票据类图片的特征的

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

用九智汇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值