MATLAB的分数阶工具箱实现,整合分数阶微积分、控制系统设计和信号处理功能模块
一、工具箱架构设计
% 主程序框架
[alpha, sys] = define_fractional_system(); % 定义分数阶系统参数
[y,t] = simulate_system(sys, t_span); % 系统仿真
analyze_system(sys, y, t); % 系统分析
design_controller(sys); % 控制器设计
二、模块实现
1. 分数阶微积分模块
function df = fractional_derivative(f, alpha, t)
% Riemann-Liouville定义实现
h = diff(t);
n = length(t);
df = zeros(n,1);
for i = 1:n
if i == 1
int_val = integral(@(x) x.^(alpha-1).*f(x), 0, t(i));
else
int_val = integral(@(x) x.^(alpha-1).*f(x), t(i-1), t(i));
end
df(i) = (1/h(i)) * int_val;
end
end
% 示例调用
t = linspace(0,10,1000);
f = @(t) sin(t);
alpha = 0.5;
df = fractional_derivative(f, alpha, t);
2. 分数阶传递函数模块
function sys = create_fractional_tf(numer, denom, alpha)
% 分数阶传递函数构造器
% numer: 分子系数向量 [a0, a1,...]
% denom: 分母系数向量 [b0, b1,...]
% alpha: 分数阶参数
num = poly2sym(numer);
den = poly2sym(denom);
sys = tf(num/den, 'Variable', 's^alpha');
end
% 示例调用
numer = [1 0.5];
denom = [1 0.2 0.1];
alpha = 0.75;
sys = create_fractional_tf(numer, denom, alpha);
3. 系统分析模块
function analyze_system(sys, t_span)
% 时域分析
figure;
step(sys, t_span);
title('阶跃响应');
% 频域分析
figure;
bode(sys);
grid on;
% Nyquist分析
figure;
nyquist(sys);
hold on;
plot([0,0], [-1,1],'r--');
legend('Nyquist曲线', '稳定性边界');
end
三、高级功能实现
1. 分数阶PID控制器
function C = fractional_pid(Kp, Ki, Kd, alpha)
% 分数阶PID控制器设计
s = tf('s');
C = Kp + Ki/s^alpha + Kd*s^(alpha-1);
end
% 示例调用
Kp = 1.2; Ki = 0.5; Kd = 0.3; alpha = 0.8;
C = fractional_pid(Kp, Ki, Kd, alpha);
2. 分数阶滤波器设计
function H = fractional_filter(order, cutoff, fs)
% 分数阶低通滤波器设计
Wn = 2*cutoff/fs;
[z,p,k] = butter(order, Wn, 's');
H = zpk(z, p*sqrt(alpha), k); % 引入分数阶参数
end
% 示例调用
order = 4; cutoff = 1000; fs = 8000;
H = fractional_filter(order, cutoff, fs);
fvtool(H);
四、数值计算优化
1. 分数阶微分方程求解
function y = solve_fode(fun, t_span, y0, alpha)
% 分数阶ODE求解器
options = odeset('RelTol',1e-6,'AbsTol',1e-9);
[~,y] = ode15s(@(t,y) fractional_deriv(fun(t,y), alpha, t), t_span, y0, options);
end
% 示例微分方程:D^0.5 y = -y + sin(t)
fun = @(t,y) -y + sin(t);
alpha = 0.5;
y0 = 0;
t_span = [0 10];
y = solve_fode(fun, t_span, y0, alpha);
2. 分数阶卷积实现
function y = fractional_conv(f, g, alpha)
% 分数阶卷积运算
n = length(f);
m = length(g);
y = zeros(1,n+m-1);
for k = 1:length(y)
sum_val = 0;
for i = max(1,k-m+1):min(k,n)
sum_val = sum_val + f(i)*g(k-i+1)*gamma(alpha+1)/gamma(alpha-i+2);
end
y(k) = sum_val;
end
end
五、可视化工具集
1. 分数阶系统相图绘制
function plot_phase_portrait(sys, x0, t_span)
% 相平面分析
[t, Y] = ode45(@(t,y) sys*y, t_span, x0);
figure;
plot(Y(:,1), Y(:,2));
xlabel('x_1'); ylabel('x_2');
title('分数阶系统相图');
end
2. 分数阶频谱分析
function plot_fractional_spectrum(x, alpha)
% 分数阶傅里叶变换频谱
X = frft(x, alpha);
f = (-length(x)/2:length(x)/2-1)*(fs/length(x));
figure;
plot(f, abs(fftshift(X)));
title(sprintf('α=%.2f 分数阶频谱', alpha));
end
六、工程应用案例
1. 粘弹性材料建模
% 参数定义
E1 = 3e6; E2 = 1e5; alpha = 0.65;
% 分数阶本构模型
sys = tf([E2 0],[1 E1*alpha 0]);
% 应力松弛仿真
t = linspace(0,1000,1000);
sigma0 = 1e6;
stress = lsim(sys, ones(size(t)), t)*sigma0;
figure;
plot(t, stress);
xlabel('时间(s)'); ylabel('应力(Pa)');
title('粘弹性材料应力松弛曲线');
2. 分数阶电路仿真
% 分数阶RLC电路模型
R = 100; L = 0.1; C = 1e-6; alpha = 0.7;
% 建立分数阶传递函数
num = [1];
den = [L*C*alpha R*C*alpha 1];
sys = tf(num, den);
% 阶跃响应分析
figure;
step(sys);
title('分数阶RLC电路阶跃响应');
推荐工具箱 mtalab程序实现的分数阶fraction order工具箱 www.youwenfan.com/contentcsj/53283.html
七、工具箱扩展建议
-
GPU加速模块
function gpu_fde(fun, t_span, y0, alpha) gpu_y0 = gpuArray(y0); gpu_t = gpuArray(t_span); gpu_y = ode15s(@(t,y) fractional_deriv(fun(t,y), alpha, t), gpu_t, gpu_y0); y = gather(gpu_y(:,end)); end -
机器学习接口
function trained_net = train_fnn(data, labels) layers = [... featureInputLayer(size(data,2)) fullyConnectedLayer(20) reluLayer fullyConnectedLayer(1) regressionLayer]; options = trainingOptions('adam',... 'MaxEpochs',50,... 'MiniBatchSize',32); trained_net = trainNetwork(data, labels, layers, options); end -
实时控制接口
function rt_controller(sys, ref_signal) % 实时控制循环 controller = ss(sys.A, sys.B, sys.C, sys.D); d = ssdata(controller); while ~isDone(ref_signal) current_error = get(ref_signal); control_signal = lsim(controller, current_error); writeAnalogOutput(control_signal); end end
八、安装与部署
-
依赖项安装
addpath(genpath('toolbox')); ver('symbolic') % 验证符号计算工具箱 -
编译为独立应用
mcc -m fractional_toolbox.m -a 'toolbox' -I 'include' -d 'bin' -
生成Simulink库
slblocks; save_system('fractional_blocks.slx');
3640

被折叠的 条评论
为什么被折叠?



