水平图像拼接的python代码

# https://zhuanlan.zhihu.com/p/641719271
#run:  python image_stitching.py --images images/scottsdale --output output.png --crop 1
#python image_stitching.py  --output E:\\work\\Img\\test4\\output.png --crop 1

# import the necessary packages
from imutils import paths
import numpy as np
import argparse
import imutils
import cv2

import os
import glob

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
#ap.add_argument("-i", "--images", type=str, required=True,
#                help="path to input directory of images to stitch")
ap.add_argument("-o", "--output", type=str, required=True,
                help="path to the output image")
ap.add_argument("-c", "--crop", type=int, default=0,
                help="whether to crop out largest rectangular region")
args = vars(ap.parse_args())

# grab the paths to the input images and initialize our images list
print("[INFO] loading images...")
#imagePaths = sorted(list(paths.list_images(args["images"])))
images = []

folder_path = 'E:\\work\\Img\\test4'
def get_image_files(folder_path):
    image_files = glob.glob(os.path.join(folder_path, '*.jpg'))
    return image_files

# loop over the image paths, load each one, and add them to our
# images to stich list

imagePaths = get_image_files(folder_path)
print(imagePaths)
for imagePath in imagePaths:
    
    imagePath.replace('\\','\\\\')
    print(imagePath)
    image = cv2.imread(imagePath)
    
    images.append(image)
    

# initialize OpenCV's image sticher object and then perform the image
# stitching
print("[INFO] stitching images...")
stitcher = cv2.createStitcher() if imutils.is_cv3() else cv2.Stitcher_create()
(status, stitched) = stitcher.stitch(images)

# if the status is '0', then OpenCV successfully performed image
# stitching
if status == 0:
    # check to see if we supposed to crop out the largest rectangular
    # region from the stitched image
    if args["crop"] > 0:
        # create a 10 pixel border surrounding the stitched image
        print("[INFO] cropping...")
        stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10,
                                      cv2.BORDER_CONSTANT, (0, 0, 0))

        # convert the stitched image to grayscale and threshold it
        # such that all pixels greater than zero are set to 255
        # (foreground) while all others remain 0 (background)
        gray = cv2.cvtColor(stitched, cv2.COLOR_BGR2GRAY)
        thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]

        # find all external contours in the threshold image then find
        # the *largest* contour which will be the contour/outline of
        # the stitched image
        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)
        c = max(cnts, key=cv2.contourArea)

        # allocate memory for the mask which will contain the
        # rectangular bounding box of the stitched image region
        mask = np.zeros(thresh.shape, dtype="uint8")
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1)

        # create two copies of the mask: one to serve as our actual
        # minimum rectangular region and another to serve as a counter
        # for how many pixels need to be removed to form the minimum
        # rectangular region
        minRect = mask.copy()
        sub = mask.copy()

        # keep looping until there are no non-zero pixels left in the
        # subtracted image
        while cv2.countNonZero(sub) > 0:
            # erode the minimum rectangular mask and then subtract
            # the thresholded image from the minimum rectangular mask
            # so we can count if there are any non-zero pixels left
            minRect = cv2.erode(minRect, None)
            sub = cv2.subtract(minRect, thresh)

        # find contours in the minimum rectangular mask and then
        # extract the bounding box (x, y)-coordinates
        cnts = cv2.findContours(minRect.copy(), cv2.RETR_EXTERNAL,
                                cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)
        c = max(cnts, key=cv2.contourArea)
        (x, y, w, h) = cv2.boundingRect(c)

        # use the bounding box coordinates to extract the our final
        # stitched image
        stitched = stitched[y:y + h, x:x + w]

    # write the output stitched image to disk
    cv2.imwrite(args["output"], stitched)

    # display the output stitched image to our screen
    cv2.imshow("Stitched", stitched)
    cv2.waitKey(0)

# otherwise the stitching failed, likely due to not enough keypoints)
# being detected
else:
    print("[INFO] image stitching failed ({})".format(status))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值