图像相似度对比分析软件,图像相似度计算方法

本文介绍了如何对比两张图片的相似度,包括使用微信小程序的“人脸对比”功能,OpenCV中的NCC算法,以及C#和Matlab的图像处理方法。还探讨了图像识别算法、图像相似度计算软件和不同编程语言下的实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

怎么对比两张图片的相似度

1、首先打开微信,选择底部“发现”。如图所示。2、然后在点击进入“小程序”。如图所示。3、然后输入“腾讯AI体验中心”搜索,点击进入。4、选择“人脸对比”。如图所示。

5、上传两张图片上去,点击“人脸比对”。6、最后两个人的相似度就出来了。完成效果图。

谷歌人工智能写作项目:神经网络伪原创

如何使用opencv中的NCC算法实现两幅图像的相似性判断

AI发猫

图像相似度计算之哈希值方法OpenCV实现分类:OpenCVImageProcessing2014-12-2521:27180人阅读评论(0)收藏举报感知哈希算法(perceptualhashalgorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。

结果越接近,就说明图像越相似。实现步骤:1.缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。

这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;2.简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;3.计算平均值:计算所有64个像素的灰度平均值;4.比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;5.计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。

组合的次序并不重要,只要保证所有图像都采用同样次序就行了;6.得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。

在理论上,这等同于”汉明距离”(Hammingdistance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。

如果不相同的数据位数不超过5,就说明两张图像很相似;如果大于10,就说明这是两张不同的图像。

以上内容摘自:下面是用OpenCV实现的测试代码:[cpp]viewplaincopyprint?stringstrSrcImageName="";cv::MatmatSrc,matSrc1,matSrc2;matSrc=cv::imread(strSrcImageName,CV_LOAD_IMAGE_COLOR);CV_Assert(matSrc.channels()==3);cv::resize(matSrc,matSrc1,cv::Size(357,419),0,0,cv::INTER_NEAREST);//cv::flip(matSrc1,matSrc1,1);cv::resize(matSrc,matSrc2,cv::Size(2177,3233),0,0,cv::INTER_LA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值