Spark算子(三)

Point 1:RepartitionOperator

package com.spark.operator;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;

public class RepartitionOperator {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("RepartitionOperator")
                .setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        // repartition算子,用于任意将RDD的partition增多或者减少!
        // coalesce仅仅将RDD的partition减少!
        // 建议使用的场景
        // 一个很经典的场景,使用Spark SQL从HIVE中查询数据时候,spark SQL会根据HIVE
        // 对应的hdfs文件的block的数量决定加载出来的RDD的partition有多少个!
        // 这里默认的partition的数量是我们根本无法设置的

        // 有些时候,可能它会自动设置的partition的数量过于少了,为了进行优化
        // 可以提高并行度,就是对RDD使用repartition算子!

        // 公司要增加部门
        List<String> staffList = Arrays.asList("xuruyun1","xuruyun2","xuruyun3"
                ,"xuruyun4","xuruyun5","xuruyun6"
                ,"xuruyun7","xuruyun8","xuruyun9"
                ,"xuruyun10","xuruyun11","xuruyun12");
        JavaRDD<String> staffRDD = sc.parallelize(staffList, 3);
        JavaRDD<String> staffRDD2 = staffRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Iterator<String> call(Integer index, Iterator<String> iterator)
                    throws Exception {
                List<String> list = new ArrayList<String>();
                while(iterator.hasNext()){
                    String staff = iterator.next();
                    list.add("部门["+(index+1)+"]"+staff);
                }
                return list.iterator();
            }
        }, true);
        for(String staffInfo : staffRDD2.collect()){
            System.out.println(staffInfo);
        }

        JavaRDD<String> staffRDD3 = staffRDD2.repartition(6);

        JavaRDD<String> staffRDD4 = staffRDD3.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Iterator<String> call(Integer index, Iterator<String> iterator)
                    throws Exception {
                List<String> list = new ArrayList<String>();
                while(iterator.hasNext()){
                    String staff = iterator.next();
                    list.add("部门["+(index+1)+"]"+staff);
                }
                return list.iterator();
            }
        }, true);
        for(String staffInfo : staffRDD4.collect()){
            System.out.println(staffInfo);
        }

        sc.close();
    }
}

Point 2:ReduceOperator

package com.spark.operator;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;

public class ReduceOperator {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("ReduceOperator")
                .setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有11010个数字,现在我们通过reduce来进行累加
        List<Integer> numberList = Arrays.asList(1,2,3,4,5);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // reduce操作的原理:首先将第一个和第二个元素,传入call方法
        // 计算一个结果,接着把结果再和后面的元素依次累加
        // 以此类推
        int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1+v2;
            }
        });

        System.out.println(sum);
        sc.close();
    };

}

Point 3:ReduceByKeyOperator

package com.spark.operator;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

// reduceByKey = groupByKey + reduce
// shuffle 洗牌  = map端 + reduce端
// spark里面这个reduceByKey在map端自带Combiner

public class ReduceByKeyOperator {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("LineCount").setMaster(
                "local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        List<Tuple2<String,Integer>> scoreList = Arrays.asList(
                new Tuple2<String, Integer>("xuruyun" , 150),
                new Tuple2<String, Integer>("liangyongqi" , 100),
                new Tuple2<String, Integer>("wangfei" , 100),
                new Tuple2<String, Integer>("wangfei" , 80));

        JavaPairRDD<String, Integer> rdd = sc.parallelizePairs(scoreList);

        rdd.reduceByKey(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1+v2;
            }
        }).foreach(new VoidFunction<Tuple2<String,Integer>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<String, Integer> tuple) throws Exception {
                System.out.println("name : " + tuple._1 + " score :" + tuple._2);
            }
        });

        sc.close();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值