Hadoop: Data Join

本文介绍了一种使用 Hadoop 实现的数据连接方法——Reduce-side Join 的具体实现细节。通过自定义 Map 和 Reduce 类,文章展示了如何进行数据分组、标签化以及最终的连接操作。此外,还提供了一个具体的例子,包括输入数据文件和期望的输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Reduce-side joining / repartitioned sort-merge join

 



 

Note:DataJoinReducerBase, on the other hand, is the workhorse of the datajoin package, and it simplifies our programming by performing a full outer join for us. Our reducer subclass only has to implement the combine() method to filter out unwanted combinations to get the desired join operation (inner join, left outer join, etc.). It’s also in the combine() method that we format the combination into the appropriate
output format.


When run the sample code in <<hadoop in action>> chapter 5. There will some errors coming up. see

http://stackoverflow.com/questions/10201500/hadoop-reduce-side-join-using-datajoin

The correct code after modified  likes

package com.test.datamine.topic;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.contrib.utils.join.DataJoinMapperBase;
import org.apache.hadoop.contrib.utils.join.DataJoinReducerBase;
import org.apache.hadoop.contrib.utils.join.TaggedMapOutput;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class DataJoin extends Configured implements Tool {

	public static class MapClass extends DataJoinMapperBase {

		protected Text generateInputTag(String inputFile) {
			String datasource = inputFile.split("-")[0];
			return new Text(datasource);
		}

		protected Text generateGroupKey(TaggedMapOutput aRecord) {
			String line = ((Text) aRecord.getData()).toString();
			String[] tokens = line.split(",");
			String groupKey = tokens[0];
			return new Text(groupKey);
		}

		protected TaggedMapOutput generateTaggedMapOutput(Object value) {
			TaggedWritable retv = new TaggedWritable((Text) value);
			retv.setTag(this.inputTag);
			return retv;
		}
	}

	public static class Reduce extends DataJoinReducerBase {

		protected TaggedMapOutput combine(Object[] tags, Object[] values) {
			if (tags.length < 2)
				return null;
			String joinedStr = "";
			for (int i = 0; i < values.length; i++) {
				if (i > 0)
					joinedStr += ",";
				TaggedWritable tw = (TaggedWritable) values[i];
				String line = ((Text) tw.getData()).toString();
				String[] tokens = line.split(",", 2);
				joinedStr += tokens[1];
			}
			TaggedWritable retv = new TaggedWritable(new Text(joinedStr));
			retv.setTag((Text) tags[0]);
			return retv;
		}
	}

	public static class TaggedWritable extends TaggedMapOutput {

		private Writable data;

		public TaggedWritable() {
			this.tag = new Text();
		}

		public TaggedWritable(Writable data) {
			this.tag = new Text("");
			this.data = data;
		}

		public Writable getData() {
			return data;
		}

		public void setData(Writable data) {
			this.data = data;
		}

		public void write(DataOutput out) throws IOException {
			// this.tag.write(out);
			// this.data.write(out);
			this.tag.write(out);
			out.writeUTF(this.data.getClass().getName());
			this.data.write(out);
		}

		public void readFields(DataInput in) throws IOException {
			// this.tag.readFields(in);
			// this.data.readFields(in);
			this.tag.readFields(in);
			String dataClz = in.readUTF();
			if (this.data == null
					|| !this.data.getClass().getName().equals(dataClz)) {
				try {
					this.data = (Writable) ReflectionUtils.newInstance(
							Class.forName(dataClz), null);
				} catch (ClassNotFoundException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
			}
			this.data.readFields(in);
		}
	}

	public int run(String[] args) throws Exception {
		Configuration conf = getConf();

		JobConf job = new JobConf(conf, DataJoin.class);

		Path in = new Path(args[0]);
		Path out = new Path(args[1]);
		FileInputFormat.setInputPaths(job, in);
		FileOutputFormat.setOutputPath(job, out);

		job.setJobName("DataJoin");
		job.setMapperClass(MapClass.class);
		job.setReducerClass(Reduce.class);

		job.setInputFormat(TextInputFormat.class);
		job.setOutputFormat(TextOutputFormat.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(TaggedWritable.class);
		job.set("mapred.textoutputformat.separator", ",");

		FileSystem fs = in.getFileSystem(conf);
		fs.delete(out);

		JobClient.runJob(job);
		return 0;
	}

	public static void main(String[] args) throws Exception {
		int res = ToolRunner.run(new Configuration(), new DataJoin(), args);

		System.exit(res);
	}
}

 

 The test data is consist of two files

customers

1,Stephanie Leung,555-555-5555
2,Edward Kim,123-456-7890
3,Jose Madriz,281-330-8004
4,David Stork,408-555-0000

 orders

3,A,12.95,02-Jun-2008
1,B,88.25,20-May-2008
2,C,32.00,30-Nov-2007
3,D,25.02,22-Jan-2009

 

the joined result is

1,Stephanie Leung,555-555-5555,B,88.25,20-May-2008
2,Edward Kim,123-456-7890,C,32.00,30-Nov-2007
3,Jose Madriz,281-330-8004,D,25.02,22-Jan-2009
3,Jose Madriz,281-330-8004,A,12.95,02-Jun-2008

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值