In-Memory Hadoop Accelerator

https://gridgaintech.wordpress.com/2013/11/07/hadoop-100x-faster-how-we-did-it/

 

Almost two years ago, Dmitriy and I stood in front of a white board at GridGain’s office thinking: “How can we deliver the real-time performance of GridGain’s in-memory technology to Hadoop customers without asking them rip and replace their systems and without asking them to move their datasets off Hadoop?”.

Given Hadoop’s architecture – the task seemed daunting; and it proved to be one of the more challenging engineering puzzles we have had to solve.

After two years of development, tens of thousands of lines of Java, Scala and C++ code, multiple design iterations, several releases and dozens of benchmarks later, we finally built a product that can deliver real-time performance to Hadoop customers with seamless integration and no tedious ETL. Actual customers deployments can now prove our performance claims and validate our product’s architecture.

Here’s how we did it.

The Idea – In-Memory Hadoop Accelerator

in_memory_hadoop2_whiteHadoop is based on two primary technologies: HDFS for storing data, and MapReduce for processing these data in parallel. Everything else in Hadoop and the Hadoop ecosystem sits atop these foundation blocks.

Originally, neither HDFS nor MapReduce were designed with real-time performance in mind. In order to deliver real-time processing without moving data out of Hadoop onto another platform, we had to improve the performance of both of these subsystems.

We decided to develop a high-performance in-memory file system which would provide 100% compatibility with HDFS and an optimized MapReduce implementation which would take advantage of this real-time file system. By doing so, we could offer all the advantages of our in-memory platform while minimizing the disruption of our customers’ existing Hadoop investments.

There are many projects and products that aim to improve Hadoop performance. Projects like HDFS2, Apache Tez, Cloudera Impala, HortonWorks Stinger, ScaleOut hServer and Apache Spark to name but a few, all aim to solve Hadoop performance issues in various ways. GridGain, puts a new spin on some of these approaches delivering unmatched performance gains while fanatically maintaining our commitment to making customers change less code and quickly get the benefits an in-memory computing platform can bring to their big data installations.

From a technology stand point GridGain’s In-Memory Hadoop Accelerator has some similarity to the architecture of Spark (optimized MapReduce), ScaleOut and HDFS2 (in-memory caching without ETL) and some features of Apache Tez (in-process execution), however, GridGain’s In-Memory Accelerator is the only product for Hadoop available today that combines the both the high performance HDFS-compatible file system and optimized in-memory MapReduce along with many other features in one fully integrated product.

In-Memory File System

First, we implemented GridGain’s In-Memory File System (GGFS) to accelerate I/O in the Hadoop stack. The original idea was that GGFS alone will be enough to gain significant performance increase. However, while we saw significant performance gains using GGFS, when working with our customers we quickly found that there were some not so obvious performance limitations to the way in which Hadoop performs MapReduce. It quickly became clear to us that GGFS alone won’t be enough but it was a critical piece that we needed to build first.

Note that you shouldn’t confuse GGFS with much slower alternatives like RAM disk. GGFS is based on our Memory-First architecture and addresses more than just the seek time of the “device”.

From the get go we designed GGFS to support both Hadoop v1 and YARN Hadoop v2. Further, we designed GGFS to work in two modes:

  • Primary (standalone), and
  • Secondary (caching HDFS).

In primary standalone mode GGFS acts as a bona-fide Hadoop file system that is PnP compatible with the standard HDFS interface. Our customers use it to deploy a high-performance in-memory Hadoop cluster and use it as any other Hadoop file system – albeit one that trades capacity for maximum performance.

One of the great added benefits of the primary mode is that it does away with NamedNode in the Hadoop deployment. Unlike a standard Hadoop deployment that requires shared storage for primary and secondary NameNodes which is usually implemented with a complex NFS setup mounted on each NameNode machine, GGFS seamlessly utilizes GridGain’s In-Memory Database under the hood to provide completely automatic scaling and failover without any need for additional shared storage or risky Single Point Of Failure (SPOF) architectures.

Furthermore, unlike Hadoop’s master-slave design for NamedNodes that prevents Hadoop systems from scaling linearly when adding new nodes, GGFS is built on a highly scalable, natively distributed, partitioned data store which provides linear scalability and auto-discovery of new nodes joining the cluster. Removing NamedNode form the architecture enabled dramatically better performance of IO operations.

GGFS’s primary mode provides maximum performance for IO operations but requires moving data from disk-based HDFS to an memory-based GGFS (i.e. from one file system to another). While data movement may be appropriate for some use cases, we support another operating mode in which absolutely no ETL is required – no need to move data out of HDFS. In this mode, GGFS works as an intelligent secondary in-memory distributed cache over the primary disk-based HDFS file system.

In the second mode, GGFS works as an intelligent secondary in-memory distributed cache over the primary disk-based HDFS file system. In this mode GGFS supports both synchronous and asynchronous read-through and write-through to and from HDFS providing either strong consistency or better performance in exchange for relaxed consistency with absolute transparency to the user and applications running on top of it. In this mode users can manually select which set of files and/or directories should be stored in GGFS and what mode – synchronous or asynchronous – should be used for each one of them for read-through and write-through to and from HDFS.

Another interesting feature of GGFS is its smart usage of block-level or file-level caching and eviction design. When working in primary mode GGFS utilizes file level caching to ensure corruption free storage (the file is either fully in GGFS or not at all). When in secondary mode, GridGain will automatically switch to block-level caching and eviction. What we discovered when working with our customers on real-world Hadoop payloads is that files on HDFS are often accessed not uniformly, i.e. they have significant “locality” in how portions of the file is being accessed. Put another way, certain blocks of a file are accessed more frequently than others. That observation led to our block-level caching implementation for the secondary mode that enables dramatically better memory utilization since GGFS can store only the most frequently used file blocks in memory – and not entire files which can easily measure in 100GBs in Hadoop.

Caching can NOT work effectively without a sophisticated eviction management mechanism to make sure that memory is used optimally. So, we built a new and technically robust eviction mechanism into our platform. Apart from obvious eviction features, you can configure certain files to never be evicted preserving them in memory in all cases for maximum performance, for example.

To ensure seamless and continuous performance during MapReduce file scanning, we’ve implemented smart data prefetching via streaming data that is expected to be read in the nearest future to the MapReduce task ahead of time. By doing so, GGFS ensures that whenever a MapReduce task finishes reading a file block, the next file block is already available in memory. A significant performance boost was achieved here due to our proprietary Inter-Process Communication (IPC) implementation which allows GGFS to achieve throughput of up to 30Gbit/s between two processes.

Table below shows GGFS vs. HDFS (on Flash-based SSDs) benchmark results for raw IO operations:

BenchmarkGGFS, ms.HDFS, ms.Boost, %
File Scan276672470%
File Create969611001%
File Random Access4132931710%
File Delete1851234667%

The above tests were performed on a 10-node cluster of Dell R610 blades with Dual 8-core CPUs, running Ubuntu 12.4 OS, 10GBE network fabric and stock unmodified Apache Hadoop 2.x distribution.

As you can see from these results the IO performance difference is quite significant. However, HDFS performance as a file system is only a part of Hadoop’s overhead. Another part, no less significant, is the MapReduce overhead. That is what we addressed with In-Memory MapReduce.

In-Memory MapReduce

Once we had our high performance in-memory file system built and tested, we turned our attention to a MapReduce implementation that would take advantage of in-memory technology.

Hadoop’s MapReduce design is one of the weakest points in Hadoop. It’s basically a inefficiently designed system when it comes to distributed processing. GridGain In-Memory MapReduce implementation relies heavily on 7 years of experience developing our widely deployed In-Memory HPC product. GridGain’s In-Memory MapReduce is designed on record-based approach vs. key-value approach of traditional MapReduce, and it enables much more streamlined parallel execution path on data stored in in-memory file system.

Furthermore, In-Memory MapReduce eliminates the standard overhead associated with the typical Hadoop job tracker polling, task tracker process creation, deployment and provisioning. All in all – GridGain’s In-Memory MapReduce is a highly optimized HPC-based implementation of the MapReduce concept enabling true low-latency data processing of data stored in GGFS.

The diagram below demonstrates the difference between a standard Hadoop MapReduce execution path and GridGain’s In-Memory MapReduce execution path:

gg_hadoop_mapred_800

As seen in this diagram our MapReduce implementation supports direct execution path from client to data node. Moreover, all execution in GridGain happens in-process with deployment handled automatically and transparently by GridGain.

In-Memory MapReduce also provides integration capability for MapReduce code written in any Hadoop supported language and not only in native Java or Scala. Developers can easily reuse existing C/C++/Python or any other existing MapReduce code with our In-Memory Accelerator for Hadoop to gain significant performance boost.

Finally, since we can remove task and job tracker polling, out of process execution, and the often unnecessary shuffling and sorting from MapReduce while letting our products work with a high-performance in-memory file system we can start seeing 10x – 100x performance increases on typical MapReduce payloads. This is not just theory, our tests and our customers can confirm this.

Below are the results for one of the internal tests that utilizes both In-Memory File System and In-Memory MapReduce. This test was specifically designed to show maximum GridGain’s Accelerator performance vs. stock Hadoop distribution for heavy I/O MapReduce jobs:

NodesHadoop, ms.Hadoop + GridGain Accelerator, ms.Boost, %
5298,00011,6222,564%
10201,3505,5373,636%
15158,9972,3856,667%
20122,0081,6477,407%
3097,8331,1748,333%
4082,77178010,612%

hadoop_chart

Tests were performed on a cluster of Dell R610 blades with Dual 8-core CPUs, running Ubuntu 12.4 OS, 10GBE network fabric and stock unmodified Apache Hadoop 2.x distribution and GridGain 5.2 release.

Management and Monitoring

No serious distributed system can be used without comprehensive DevOps support and In-Memory Accelerator for Hadoop comes with a comprehensive unified GUI-based management and monitoring tool called GridGain Visor. Over the last 12 months we’ve added significant support in Visor for Hadoop Accelerator.

Visor provides deep DevOps capabilities including an operations & telemetry dashboard, database and compute grid management, as well as GGFS management that provides GGFS monitoring and file management between HDFS, local and GGFS file systems.

visor_fm2

visor_ggfs

As part of GridGain Visor, In-Memory Accelerator For Hadoop also comes with a GUI-basedfile system profiler, which allows you to keep track of all operations your GGFS or HDFS file systems make and identifies potential hot spots.

GGFS profiler tracks speed and throughput of reads, writes, various directory operations, for all files and displays these metrics in a convenient view which allows you to sort based on any profiled criteria, e.g. from slowest write to fastest. Profiler also makes suggestions whenever it is possible to gain performance by loading file data into in-memory GGFS.

visor_profiler

Conclusion

After almost 2 years of development we have a well rounded product that can help you accelerate Hadoop MapReduce up to 100x times with minimal integration and effort. It’s based on our innovative high-performance in-memory file system and in-memory MapReduce implementation coupled with one of the best management and monitoring tools.

If you want to be able to say words “milliseconds” and “Hadoop” in one sentence – you need to take a serious look at GridGain’s In-Memory Hadoop Accelerator.

/home/hadoopmaster/jdk1.8.0_161/bin/java -javaagent:/home/hadoopmaster/idea-IC-221.6008.13/lib/idea_rt.jar=34515:/home/hadoopmaster/idea-IC-221.6008.13/bin -Dfile.encoding=UTF-8 -classpath /home/hadoopmaster/jdk1.8.0_161/jre/lib/charsets.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/deploy.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/cldrdata.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/dnsns.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/jaccess.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/jfxrt.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/localedata.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/nashorn.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunec.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunjce_provider.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunpkcs11.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/zipfs.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/javaws.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jce.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jfr.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jfxswt.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jsse.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/management-agent.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/plugin.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/resources.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/rt.jar:/root/IdeaProjects/kkk/out/production/kkk:/home/hadoopmaster/scala-2.12.15/lib/scala-reflect.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-xml_2.12-1.0.6.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-parser-combinators_2.12-1.0.7.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-swing_2.12-2.0.3.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-library.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xz-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jta-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jpam-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/ST4-4.0.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guice-3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/ivy-2.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/oro-2.0.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/blas-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/core-1.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/gson-2.2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/tink-1.6.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jsp-api-2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/okio-1.14.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/opencsv-2.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/shims-0.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xmlenc-0.52.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arpack-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guava-14.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jline-2.14.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jsr305-3.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/lapack-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/log4j-1.2.17.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/minlog-1.3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/stream-2.9.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/velocity-1.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/generex-1.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-api-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/janino-3.0.16.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jdo-api-3.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/objenesis-2.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/paranamer-2.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/py4j-0.10.9.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/pyrolite-4.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/HikariCP-2.5.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-io-2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-cli-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javax.inject-1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/libfb303-0.9.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/lz4-java-1.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/okhttp-3.12.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/snakeyaml-1.27.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/stax-api-1.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/JTransforms-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aopalliance-1.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-ipc-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/breeze_2.12-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-cli-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-net-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/derby-10.14.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-jdbc-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-utils-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/httpcore-4.4.14.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jaxb-api-2.2.11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-hk2-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jodd-core-3.5.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-core-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/super-csv-2.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xml-apis-1.4.01.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zookeeper-3.6.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/JLargeArrays-1.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/activation-1.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/automaton-1.11-8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-dbcp-1.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-lang-2.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-text-1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-serde-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javolution-5.5.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/libthrift-0.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-shims-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/slf4j-api-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zjsonpatch-0.3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zstd-jni-1.5.0-4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/chill-java-0.10.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/chill_2.12-0.10.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guice-servlet-3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-auth-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-hdfs-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-locator-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/httpclient-4.5.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-xc-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-util-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/joda-time-2.10.10.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kryo-shaded-4.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-jmx-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-jvm-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/rocksdbjni-6.20.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xercesImpl-2.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aircompressor-0.21.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/algebra_2.12-2.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/annotations-17.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/antlr4-runtime-4.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/api-util-1.0.0-M20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-format-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-vector-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-mapred-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-codec-1.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-pool-1.5.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/compress-lzf-1.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-beeline-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javax.jdo-3.2.0-m3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jaxb-runtime-2.3.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-client-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-common-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-server-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/leveldbjni-all-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-core-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-json-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/RoaringBitmap-0.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/antlr-runtime-3.5.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-math3-3.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-client-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-core-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javassist-3.25.0-GA.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jul-to-slf4j-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/protobuf-java-2.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/snappy-java-1.1.8.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/transaction-api-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/bonecp-0.8.0.RELEASE.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-crypto-1.1.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-digester-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-lang3-3.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-client-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-exec-2.3.9-core.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-metastore-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-jaxrs-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.inject-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-mapreduce-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-xml_2.12-1.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/shapeless_2.12-2.3.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/slf4j-log4j12-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-sql_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/threeten-extra-1.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zookeeper-jute-3.6.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-compress-1.21.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-logging-1.1.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-recipes-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-api-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-0.23-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jcl-over-slf4j-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-column-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-common-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-hadoop-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-library-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-reflect-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-core_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-hive_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-repl_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-tags_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-yarn_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/api-asn1-api-1.0.0-M20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/breeze-macros_2.12-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/cats-kernel_2.12-2.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-httpclient-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/flatbuffers-java-1.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-llap-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-service-rpc-3.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-storage-api-2.7.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-sslengine-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-graphite-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/netty-all-4.1.68.Final.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-jackson-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-compiler-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mesos_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mllib_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-util_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xbean-asm9-shaded-4.20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/apacheds-i18n-2.0.0-M15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arpack_combined_all-0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-memory-core-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-beanutils-1.9.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-compiler-3.0.16.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-framework-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-core-4.1.17.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-core-asl-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-databind-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.ws.rs-api-2.1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-client-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/macro-compat_2.12-1.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-encoding-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-graphx_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-sketch_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-unsafe_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/univocity-parsers-2.9.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-memory-netty-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-rdbms-4.1.19.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-annotations-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-client-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-kvstore_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-macros_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-collections-3.2.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-configuration-1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-api-jdo-4.2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-mapper-asl-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.servlet-api-4.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-ast_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-catalyst_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-launcher_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/audience-annotations-0.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-scheduler-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-vector-code-gen-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-annotations-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.xml.bind-api-2.3.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-core_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-streaming_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-platform_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-apps-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-core-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-node-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-rbac-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/logging-interceptor-3.12.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/mesos-1.4.0-shaded-protobuf.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/osgi-resource-locator-1.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-kubernetes_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-tags_2.12-3.2.1-tests.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aopalliance-repackaged-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/htrace-core-3.1.0-incubating.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/istack-commons-runtime-3.0.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.annotation-api-1.3.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.validation-api-2.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-scalap_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-batch-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mllib-local_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-container-servlet-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-jackson_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-common-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-events-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-policy-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-dataformat-yaml-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-datatype-jsr310-2.11.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-metrics-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-server-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-network-common_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-module-scala_2.12-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-discovery-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-format-structures-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-network-shuffle_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/apacheds-kerberos-codec-2.0.0-M15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-app-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-extensions-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-networking-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-scheduling-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-core-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-server-web-proxy-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-container-servlet-core-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-autoscaling-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-flowcontrol-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-collection-compat_2.12-2.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-hive-thriftserver_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-certificates-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-coordination-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-storageclass-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-parser-combinators_2.12-1.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-apiextensions-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-shuffle-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-jobclient-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-admissionregistration-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/dropwizard-metrics-hadoop-metrics2-reporter-0.1.2.jar kkk.WordCount Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 25/06/02 20:17:03 INFO SparkContext: Running Spark version 3.2.1 25/06/02 20:17:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 25/06/02 20:17:04 INFO ResourceUtils: ============================================================== 25/06/02 20:17:04 INFO ResourceUtils: No custom resources configured for spark.driver. 25/06/02 20:17:04 INFO ResourceUtils: ============================================================== 25/06/02 20:17:04 INFO SparkContext: Submitted application: WordCount 25/06/02 20:17:04 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0) 25/06/02 20:17:04 INFO ResourceProfile: Limiting resource is cpu 25/06/02 20:17:04 INFO ResourceProfileManager: Added ResourceProfile id: 0 25/06/02 20:17:04 INFO SecurityManager: Changing view acls to: root 25/06/02 20:17:04 INFO SecurityManager: Changing modify acls to: root 25/06/02 20:17:04 INFO SecurityManager: Changing view acls groups to: 25/06/02 20:17:04 INFO SecurityManager: Changing modify acls groups to: 25/06/02 20:17:04 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set() 25/06/02 20:17:05 INFO Utils: Successfully started service 'sparkDriver' on port 41615. 25/06/02 20:17:05 INFO SparkEnv: Registering MapOutputTracker 25/06/02 20:17:05 INFO SparkEnv: Registering BlockManagerMaster 25/06/02 20:17:05 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 25/06/02 20:17:05 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 25/06/02 20:17:05 INFO SparkEnv: Registering BlockManagerMasterHeartbeat 25/06/02 20:17:05 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-68486311-3f69-48e8-8f69-e7afffcf5979 25/06/02 20:17:05 INFO MemoryStore: MemoryStore started with capacity 258.5 MiB 25/06/02 20:17:05 INFO SparkEnv: Registering OutputCommitCoordinator 25/06/02 20:17:06 INFO Utils: Successfully started service 'SparkUI' on port 4040. 25/06/02 20:17:06 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://hadoopmaster:4040 25/06/02 20:17:06 INFO Executor: Starting executor ID driver on host hadoopmaster 25/06/02 20:17:06 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 41907. 25/06/02 20:17:06 INFO NettyBlockTransferService: Server created on hadoopmaster:41907 25/06/02 20:17:06 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 25/06/02 20:17:06 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManagerMasterEndpoint: Registering block manager hadoopmaster:41907 with 258.5 MiB RAM, BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:08 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 244.0 KiB, free 258.2 MiB) 25/06/02 20:17:09 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 23.4 KiB, free 258.2 MiB) 25/06/02 20:17:09 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on hadoopmaster:41907 (size: 23.4 KiB, free: 258.5 MiB) 25/06/02 20:17:09 INFO SparkContext: Created broadcast 0 from textFile at WordCount.scala:9 Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/home/hadoopmaster/words.txt at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287) at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229) at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.Partitioner$.$anonfun$defaultPartitioner$4(Partitioner.scala:78) at org.apache.spark.Partitioner$.$anonfun$defaultPartitioner$4$adapted(Partitioner.scala:78) at scala.collection.immutable.List.map(List.scala:293) at org.apache.spark.Partitioner$.defaultPartitioner(Partitioner.scala:78) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$reduceByKey$4(PairRDDFunctions.scala:322) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:414) at org.apache.spark.rdd.PairRDDFunctions.reduceByKey(PairRDDFunctions.scala:322) at kkk.WordCount$.main(WordCount.scala:10) at kkk.WordCount.main(WordCount.scala) 25/06/02 20:17:09 INFO SparkContext: Invoking stop() from shutdown hook 25/06/02 20:17:09 INFO SparkUI: Stopped Spark web UI at http://hadoopmaster:4040 25/06/02 20:17:09 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 25/06/02 20:17:09 INFO MemoryStore: MemoryStore cleared 25/06/02 20:17:09 INFO BlockManager: BlockManager stopped 25/06/02 20:17:09 INFO BlockManagerMaster: BlockManagerMaster stopped 25/06/02 20:17:09 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 25/06/02 20:17:10 INFO SparkContext: Successfully stopped SparkContext 25/06/02 20:17:10 INFO ShutdownHookManager: Shutdown hook called 25/06/02 20:17:10 INFO ShutdownHookManager: Deleting directory /tmp/spark-213e3a91-227c-4e0a-8254-ab5c0f00786d Process finished with exit code 1
06-04
<think>嗯,用户遇到了Spark作业中经典的输入路径错误问题。从描述看,用户在本地路径file:/home/hadoopmaster/words.txt运行WordCount时触发了InvalidInputException。有趣的是,用户已经引用了站内资料说明HDFS路径要求,但似乎仍在尝试使用本地文件系统路径。用户可能是个Spark初学者,正在本地搭建环境测试WordCount示例。ta的困惑点在于:为什么教程里写的file://路径实际运行时报错?深层需求其实是理解Spark文件读取机制的核心差异——HDFS分布式存储vs本地文件系统。需要特别强调spark-shell默认行为这个关键点,因为很多新手会忽略shell环境预置的HDFS配置。注意到用户引用了5个相关资料,其中[1][2]明确指出HDFS路径要求,[5]还展示了正确的RDD操作代码。这说明用户做过功课但未能贯通应用。解决方案需要分层呈现:1)最直接的workaround是用spark.read.textFile("file:///...")重写路径2)更专业的做法是通过SparkConf配置fs.defaultFS覆盖默认HDFS地址3)生产环境规范应该先用hdfsdfs-put上传考虑增加演示substitute机制的场景代码,因为用户提到的是绝对路径失效问题。对于/home开头的Linux路径,要强调file://需要三个斜杠的特殊语法。最后用表格对比local模式与集群模式的文件协议差异会更直观——毕竟visuallearner更容易记住对比表格。</think> Spark 作业中出现 `Input path does not exist` 错误的根本原因是 **Spark 默认从 HDFS 读取文件**,而非本地文件系统(除非显式指定)。以下是详细解决方案: --- ### **问题原因分析** 1. **Spark 默认文件系统 (HDFS)** Spark Shell/作业默认使用 `hdfs://` 协议,路径指向 HDFS(如 `hdfs://localhost:9000/user/hadoop/`),若文件未上传至 HDFS 则报错。 2. **本地路径协议未生效** `file:/home/hadoopmaster/words.txt` 未触发 `file://` 协议解析,导致路径被错误映射到 HDFS。 --- ### **解决方案** #### **方法 1:上传文件到 HDFS(推荐)** ```bash # 上传本地文件到 HDFS hdfs dfs -put /home/hadoopmaster/words.txt /user/hadoop/words.txt # Spark 代码中改用 HDFS 路径 val textFile = sc.textFile("hdfs://localhost:9000/user/hadoop/words.txt") ``` ✅ **优势**:符合分布式计算规范,适用于集群环境[^1][^2]。 --- #### **方法 2:显式指定本地文件协议** 在 Spark 代码中 **强制使用 `file://` 前缀**: ```scala // 明确声明本地文件路径 val textFile = sc.textFile("file:///home/hadoopmaster/words.txt") ``` ⚠️ **注意**: - 仅限单机模式(Local Mode)或 Driver 节点本地文件 - 集群模式下需确保所有节点均存在相同路径 --- #### **方法 3:修改默认文件系统(测试环境适用)** 在 `spark-shell` 启动时覆盖默认配置: ```bash spark-shell --conf spark.hadoop.fs.defaultFS=file:/// ``` 启动后直接读取本地路径: ```scala val textFile = sc.textFile("/home/hadoopmaster/words.txt") // 自动解析为 file:// ``` --- ### **完整 WordCount 修正示例** ```scala // 正确读本地文件(需显式声明协议) val textFile = sc.textFile("file:///home/hadoopmaster/words.txt") val wordCounts = textFile .flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.saveAsTextFile("output") // 结果保存到 HDFS 的 output 目录 ``` --- ### **关键验证步骤** 1. **检查文件是否存在** ```bash hdfs dfs -ls /user/hadoop/words.txt # 验证 HDFS ls /home/hadoopmaster/words.txt # 验证本地 ``` 2. **查看 Spark 日志** 日志中应显示正确协议: ```log INFO HadoopRDD: Input Path: file:///home/hadoopmaster/words.txt ``` --- ### **错误排查表** | 现象 | 原因 | 修复方式 | |------|------|----------| | `hdfs://localhost:9000/... not exist` | 路径被映射到 HDFS | 添加 `file://` 前缀或上传 HDFS | | `File does not exist` | 本地路径错误/权限不足 | 检查路径拼写及文件权限 | | 空结果集 | 文件无内容或分隔符错误 | 验证文件格式和 `split` 逻辑[^5] | > **生产环境建议**:始终使用 HDFS 存储输入数据,避免本地路径带来的集群兼容性问题[^2]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值