并发编程修九:并发容器之CopyOnWriteArrayList

本文详细介绍了CopyOnWrite容器的概念及其实现原理,探讨了CopyOnWriteArrayList的内部机制,并通过实例展示了CopyOnWrite容器在读多写少场景中的应用。此外,还分析了CopyOnWrite容器可能带来的内存占用和数据一致性问题。

作者:海子
出处:http://www.cnblogs.com/dolphin0520/

目录:
一.什么是CopyOnWrite容器
二.CopyOnWriteArrayList的实现原理
三.CopyOnWrite的应用场景
四.CopyOnWrite的缺点

一.什么是CopyOnWrite容器

CopyOnWrite容器即写时复制的容器。通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后,再将原容器的引用指向新的容器。这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器。

二.CopyOnWriteArrayList的实现原理

 在使用CopyOnWriteArrayList之前,我们先阅读其源码了解下它是如何实现的。以下代码是向CopyOnWriteArrayList中add方法的实现(向CopyOnWriteArrayList里添加元素),可以发现在添加的时候是需要加锁的,否则多线程写的时候会Copy出N个副本出来。

/**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        Object[] elements = getArray();
        int len = elements.length;
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        newElements[len] = e;
        setArray(newElements);
        return true;
    } finally {
        lock.unlock();
    }
    }

读的时候不需要加锁,如果读的时候有多个线程正在向CopyOnWriteArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的CopyOnWriteArrayList。

public E get(int index) {
    return get(getArray(), index);
}

JDK中并没有提供CopyOnWriteMap,我们可以参考CopyOnWriteArrayList来实现一个,基本代码如下:

import java.util.Collection;
import java.util.Map;
import java.util.Set;

public class CopyOnWriteMap<K, V> implements Map<K, V>, Cloneable {
    private volatile Map<K, V> internalMap;

    public CopyOnWriteMap() {
        internalMap = new HashMap<K, V>();
    }

    public V put(K key, V value) {

        synchronized (this) {
            Map<K, V> newMap = new HashMap<K, V>(internalMap);
            V val = newMap.put(key, value);
            internalMap = newMap;
            return val;
        }
    }

    public V get(Object key) {
        return internalMap.get(key);
    }

    public void putAll(Map<? extends K, ? extends V> newData) {
        synchronized (this) {
            Map<K, V> newMap = new HashMap<K, V>(internalMap);
            newMap.putAll(newData);
            internalMap = newMap;
        }
    }
}

 实现很简单,只要了解了CopyOnWrite机制,我们可以实现各种CopyOnWrite容器,并且在不同的应用场景中使用。

三.CopyOnWrite的应用场景

CopyOnWrite并发容器用于读多写少的并发场景。比如白名单,黑名单,商品类目的访问和更新场景,假如我们有一个搜索网站,用户在这个网站的搜索框中,输入关键字搜索内容,但是某些关键字不允许被搜索。这些不能被搜索的关键字会被放在一个黑名单当中,黑名单每天晚上更新一次。当用户搜索时,会检查当前关键字在不在黑名单当中,如果在,则提示不能搜索。实现代码如下:

package com.ifeve.book;

import java.util.Map;

import com.ifeve.book.forkjoin.CopyOnWriteMap;

/**
 * 黑名单服务
 *
 * @author fangtengfei
 *
 */
public class BlackListServiceImpl {

    private static CopyOnWriteMap<String, Boolean> blackListMap = new CopyOnWriteMap<String, Boolean>(
            1000);

    public static boolean isBlackList(String id) {
        return blackListMap.get(id) == null ? false : true;
    }

    public static void addBlackList(String id) {
        blackListMap.put(id, Boolean.TRUE);
    }

    /**
     * 批量添加黑名单
     *
     * @param ids
     */
    public static void addBlackList(Map<String,Boolean> ids) {
        blackListMap.putAll(ids);
    }

}

代码很简单,但是使用CopyOnWriteMap需要注意两件事情:

  1. 减少扩容开销。根据实际需要,初始化CopyOnWriteMap的大小,避免写时CopyOnWriteMap扩容的开销。

  2. 使用批量添加。因为每次添加,容器每次都会进行复制,所以减少添加次数,可以减少容器的复制次数。如使用上面代码里的addBlackList方法。

四.CopyOnWrite的缺点

 CopyOnWrite容器有很多优点,但是同时也存在两个问题,即内存占用问题和数据一致性问题。所以在开发的时候需要注意一下。

  内存占用问题。因为CopyOnWrite的写时复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,旧的对象和新写入的对象(注意:在复制的时候只是复制容器里的引用,只是在写的时候会创建新对象添加到新容器里,而旧容器的对象还在使用,所以有两份对象内存)。如果这些对象占用的内存比较大,比如说200M左右,那么再写入100M数据进去,内存就会占用300M,那么这个时候很有可能造成频繁的Yong GC和Full GC。之前我们系统中使用了一个服务由于每晚使用CopyOnWrite机制更新大对象,造成了每晚15秒的Full GC,应用响应时间也随之变长。

  针对内存占用问题,可以通过压缩容器中的元素的方法来减少大对象的内存消耗,比如,如果元素全是10进制的数字,可以考虑把它压缩成36进制或64进制。或者不使用CopyOnWrite容器,而使用其他的并发容器,如ConcurrentHashMap。

  数据一致性问题。CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器。

在只读的情况下,CopyOnWriteArrayList 比 Collections.synchronizedMap,效率高很多.

效率测试可以参考该博客
http://blog.youkuaiyun.com/wind5shy/article/details/5396887

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值