Counting Divisors
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 1374 Accepted Submission(s): 495
Problem Description
In mathematics, the function
d(n)
denotes the number of divisors of positive integer
n
.
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
(∑i=lrd(ik))mod998244353
Input
The first line of the input contains an integer
T(1≤T≤15)
, denoting the number of test cases.
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
Output
For each test case, print a single line containing an integer, denoting the answer.
Sample Input
3 1 5 1 1 10 2 1 100 3
Sample Output
10 48 2302
Source
Recommend
题意:求那个公式
解题思路:设
n=pc11pc22...pcmmn=p
,则
d(nk)=(kc1+1)(kc2+1)...(kcm+1)
枚举不超过
r√
的所有质数
p
,再枚举区间
[l,r]
中所有
p
的倍数,将其分解质因数,最后剩下的部分就是超过
r√
的质数,只可能是
0
个或
1
个。
时间复杂度 O(r√+(r−l+1)loglog(r−l+1))
时间复杂度 O(r√+(r−l+1)loglog(r−l+1))
#include<cstdio>
typedef long long ll;
const int N=1000010,P=998244353;
int Case,i,j,k,p[N/10],tot,g[N],ans;ll n,l,r,f[N];bool v[N];
inline void work(ll p){
for(ll i=l/p*p;i<=r;i+=p)if(i>=l){
int o=0;
while(f[i-l]%p==0)f[i-l]/=p,o++;
g[i-l]=1LL*g[i-l]*(o*k+1)%P;//i的因子个数
}
}
int main(){
//枚举到N的所有质数
for(i=2;i<N;i++){
if(!v[i])p[tot++]=i;
for(j=0;j<tot&&i*p[j]<N;j++){
v[i*p[j]]=1;
if(i%p[j]==0)break;
}
}
scanf("%d",&Case);
while(Case--){
scanf("%lld%lld%d",&l,&r,&k);
n=r-l;
for(i=0;i<=n;i++)f[i]=i+l,g[i]=1;
for(i=0;i<tot;i++){
if(1LL*p[i]*p[i]>r)break;
work(p[i]);
}
for(ans=i=0;i<=n;i++){
if(f[i]>1)g[i]=1LL*g[i]*(k+1)%P;
ans=(ans+g[i])%P;
}
printf("%d\n",ans);
}
return 0;
}