数据量很大,分页查询很慢,怎么优化?

本文探讨了在数据量较大时如何优化分页查询。通过一般分页查询、使用子查询、利用id限定以及创建临时表等方式进行优化,强调了在id递增的情况下,使用id范围查询能显著提高查询效率。同时指出,对于数据量庞大的表,应考虑使用分布式唯一id生成器,并合理利用索引来提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。

下面简单说一下我知道的一些方法。

准备工作

为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。

  • 表名:order_history
  • 描述:某个业务的订单历史表
  • 主要字段:unsigned int id,tinyint(4) int type
  • 字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
  • 数据量:5709294
  • MySQL版本:5.7.16 线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:
select count(*) from orders_history; 

返回结果:5709294

三次查询时间分别为:

  • 8903 ms
  • 8323 ms
  • 8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:

  • 第一个参数指定第一个返回记录行的偏移量,注意从

0开始

  • 第二个参数指定返回记录行的最大数目
  • 如果只给定一个参数:它表示返回最大的记录行数目
  • 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
  • 初始记录行的偏移量是 0(而不是 1)

下面是一个应用实例:


select * from orders_history where type=8 limit 1000,10; 

该条语句将会从表 orders_history 中查询

offset:1000开始之后的10条数据,也就是第1001条到第1010条数据到第

1001条数据(1001<=id<=1010)。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:


select * from orders_history where type=8 order <
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员yqy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值