Prime Ring Problem
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 9 Accepted Submission(s) : 5
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1. [img]../../data/images/1016-1.gif[/img]
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. You
are to write a program that completes above process. Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
思路:
每次选出一个与前一个之和是素数的数字放进去,第n个放进去后还要判断与第一个之和是素数才能输出。
代码如下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
int a[25];
int n ;
int vist[25];
int cases = 1;
void init()
{
for(int i = 0; i < 25; i ++)
vist[i] = 0;
a[0] = 1;
vist[1] = 1;
}
int is_prime(int x)
{
for(int i = 2; i <= floor(sqrt(x)+0.5); i ++)
if(x % i == 0) return 0;
return 1;
}
void dp(int cur)
{
if(cur == n && is_prime(1+a[n-1]))
{
for(int i = 0; i < n; i ++){
if(!i)printf("%d",a[i]);
else
printf(" %d",a[i]);
}
printf("\n");
}
else
{
for(int i = 1; i <= n; i ++)
{
if(!vist[i] && is_prime(i+a[cur-1])){
a[cur] = i;
vist[i] = 1;
dp(cur+1);
vist[i] = 0;
}
}
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
printf("Case %d:\n",cases++);
init();
dp(1);
printf("\n");
}
return 0;
}
400

被折叠的 条评论
为什么被折叠?



