计算几何(定积分求面积)
The area
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6614 Accepted Submission(s): 4633
Note: The point P1 in the picture is the vertex of the parabola.

Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
2 5.000000 5.000000 0.000000 0.000000 10.000000 0.000000 10.000000 10.000000 1.000000 1.000000 14.000000 8.222222
33.33 40.69HintFor float may be not accurate enough, please use double instead of float.
计算量还是挺大的
设
直线方程:y=kx+t…………………………………………………………(1)
抛物线方程:y=ax^2+bx+c……………………………………………………(2)
已知抛物线顶点p1(x1,y1),两线交点p2(x2,y2)和p3(x3,y3)
斜率k=(y3-y2)/(x3-x2)……………………………………………………(3)
把p3点代入(1)式结合(3)式可得:t=y3-(k*x3)
又因为p1是抛物线的顶点,可得关系:x1=-b/2a即b=-2a*x1………………(4)
把p1点代入(2)式结合(4)式可得:a*x1*x1-2a*x1*x1+c=y1化简得c=y1+a*x1*x1……(5)
把p2点代入(2)式结合(4)式和(5)式可得:a=(y2-y1)/((x1-x2)*(x1-x2))
于是通过3点求出了k,t,a,b,c即两个方程式已求出
题目时求面积s
通过积分可知:s=f(x2->x3)(积分符号)(ax^2+bx+c-(kx+t))
=f(x2->x3)(积分符号)(ax^2+(b-k)x+c-t)
=[a/3*x^3+(b-k)/2*x^2+(c-t)x](x2->x3)
=a/3*x3*x3*x3+(b-k)/2*x3*x3+(c-t)*x3-(a/3*x2*x2*x2+(b-k)/2*x2*x2+(c-t)*x2)
化简得:
面积公式:s=-(y2-y1)/((x2-x1)*(x2-x1))*((x3-x2)*(x3-x2)*(x3-x2))/6;
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int t;
double x1,x2,x3,y1,y2,y3;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&x1,&y1);
scanf("%lf%lf",&x2,&y2);
scanf("%lf%lf",&x3,&y3);
double temp1=y1-y2;
double temp2=(x2-x1)*(x2-x1);
double temp3=(x3-x2)*(x3-x2)*(x3-x2);
printf("%.2lf\n",temp1/temp2*temp3/6.0);
}
return 0;
}