hdu-1071 The area

本文介绍了一种使用计算几何的方法来求解由抛物线和直线围成的土地面积问题。通过给定三个关键点的位置坐标,利用定积分原理,推导出面积计算公式,并给出具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算几何(定积分求面积)

The area

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6614    Accepted Submission(s): 4633


Problem Description
Ignatius bought a land last week, but he didn't know the area of the land because the land is enclosed by a parabola and a straight line. The picture below shows the area. Now given all the intersectant points shows in the picture, can you tell Ignatius the area of the land?

Note: The point P1 in the picture is the vertex of the parabola.


 

Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
 

Output
For each test case, you should output the area of the land, the result should be rounded to 2 decimal places.
 

Sample Input
2 5.000000 5.000000 0.000000 0.000000 10.000000 0.000000 10.000000 10.000000 1.000000 1.000000 14.000000 8.222222
 

Sample Output
33.33 40.69
Hint
For float may be not accurate enough, please use double instead of float.
 

解题思路:

计算量还是挺大的


  直线方程:y=kx+t…………………………………………………………(1)
  抛物线方程:y=ax^2+bx+c……………………………………………………(2)


已知抛物线顶点p1(x1,y1),两线交点p2(x2,y2)和p3(x3,y3)


斜率k=(y3-y2)/(x3-x2)……………………………………………………(3)


把p3点代入(1)式结合(3)式可得:t=y3-(k*x3)


又因为p1是抛物线的顶点,可得关系:x1=-b/2a即b=-2a*x1………………(4)


把p1点代入(2)式结合(4)式可得:a*x1*x1-2a*x1*x1+c=y1化简得c=y1+a*x1*x1……(5)


把p2点代入(2)式结合(4)式和(5)式可得:a=(y2-y1)/((x1-x2)*(x1-x2))


于是通过3点求出了k,t,a,b,c即两个方程式已求出


题目时求面积s


通过积分可知:s=f(x2->x3)(积分符号)(ax^2+bx+c-(kx+t))
                              =f(x2->x3)(积分符号)(ax^2+(b-k)x+c-t)
                              =[a/3*x^3+(b-k)/2*x^2+(c-t)x](x2->x3)
                              =a/3*x3*x3*x3+(b-k)/2*x3*x3+(c-t)*x3-(a/3*x2*x2*x2+(b-k)/2*x2*x2+(c-t)*x2)


化简得:
面积公式:s=-(y2-y1)/((x2-x1)*(x2-x1))*((x3-x2)*(x3-x2)*(x3-x2))/6;

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
    int t;
    double x1,x2,x3,y1,y2,y3;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lf%lf",&x1,&y1);
        scanf("%lf%lf",&x2,&y2);
        scanf("%lf%lf",&x3,&y3);
        double temp1=y1-y2;
        double temp2=(x2-x1)*(x2-x1);
        double temp3=(x3-x2)*(x3-x2)*(x3-x2);
        printf("%.2lf\n",temp1/temp2*temp3/6.0);
    }
    return 0;
}


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值