WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
|
w x | Kwx | Awx | Nw | Cwx | Ewx |
1 1 | 1 | 1 | 0 | 1 | 1 |
1 0 | 0 | 1 | 0 | 0 | 0 |
0 1 | 0 | 1 | 1 | 1 | 0 |
0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
InputInput consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
For each test case, output a line containing tautology or not as appropriate.
ApNp ApNq 0
tautology not
题意转自http://user.qzone.qq.com/289065406/blog/1309062835
大致题意:
输入由p、q、r、s、t、K、A、N、C、E共10个字母组成的逻辑表达式,
其中p、q、r、s、t的值为1(true)或0(false),即逻辑变量;
K、A、N、C、E为逻辑运算符,
K --> and: x && y
A --> or: x || y
N --> not : !x
C --> implies : (!x)||y
E --> equals : x==y
问这个逻辑表达式是否为永真式。
PS:输入格式保证是合法的
解题思路:
p, q, r, s, t不同的取值组合共32种情况,枚举不同取值组合代入逻辑表达式WFF进行计算。
如果对于所有的取值组合,WFF值都为 true, 则结果为 tautology,否则为 not。
WFF的计算方法:
从字符串WFF的末尾开始依次向前读取字符。
构造一个栈stack,当遇到逻辑变量 p, q, r, s ,t 则将其当前的值压栈;
遇到 N 则取栈顶元素进行非运算,运算结果的值压栈;
遇到K, A, C, E则从栈顶中弹出两个元素进行相应的运算,将结果的值压栈。
由于输入是合法的,当字符串WFF扫描结束时,栈stack中只剩一个值,该值就是逻辑表达式WFF的值。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
char str[110];
int ans[110];
int put()
{
int pp,qq,ss,tt,rr,i,j;
for(pp=0;pp<=1;pp++)
{
for(qq=0;qq<=1;qq++)
{
for(ss=0;ss<=1;ss++)
{
for(tt=0;tt<=1;tt++)
{
for(rr=0;rr<=1;rr++)
{
j=0;
for(i=strlen(str)-1;i>=0;i--)
{
if(str[i]=='p'){ans[j]=pp;j++;}
if(str[i]=='s'){ans[j]=ss;j++;}
if(str[i]=='t'){ans[j]=tt;j++;}
if(str[i]=='r'){ans[j]=rr;j++;}
if(str[i]=='q'){ans[j]=qq;j++;}
if(str[i]=='K'){j--;ans[j-1]=ans[j]&&ans[j-1];}
if(str[i]=='A'){j--;ans[j-1]=ans[j]||ans[j-1];}
if(str[i]=='C'){j--;ans[j-1]=(!ans[j-1])||ans[j];}
if(str[i]=='N'){ans[j-1]=!ans[j-1];}
if(str[i]=='E'){j--;ans[j-1]=ans[j]==ans[j-1];}
}
if(j!=1||ans[j-1]==0)
return 0;
}
}
}
}
}
return 1;
}
int main()
{
while(~scanf("%s",str))
{
if(str[0]=='0')
break;
else
{
if(put()==1)
printf("tautology\n");
else
printf("not\n");
}
}
return 0;
}