解读: FlowNet learning optical flow with convolutional networks

本文探讨了如何利用卷积神经网络(CNN)解决光学流估算问题,通过端到端训练实现从图像对中预测光学流场。文章比较了两种架构,一种为遗传架构,另一种包含相关层用于不同图像位置特征向量的匹配。

贡献点:

           Construct CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. 

           Train CNN end-to-end to learn predicting the optical flow field from a pair of images

            Propose and compare two architectures: a genetic architecture and another one including a layer that correlates feature vectors at different image locations.


数据库: KITTI Sintel

 

算法:

          While optical flow estimation needs precise per-pixel localization, it also requires finding correspondences between two input images.

          Not only learning image feature representations, but also learn to match them at different locations in the two images. 


框架图:




评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值