SVM Learning transformation matrix 的几篇paper

本文深入探讨了在监督学习和半监督学习环境下,特征增强技术在异构域适应中的应用,详细介绍了由WenLi、Lixin Duan、Dong Xu和Ivor W.H. Tsang共同发表的论文《Learning with Augmented Features for Supervised and Semi-supervised Heterogeneous Domain Adaptation》。同时,文章回顾了Lixin Duan、Dong Xu和Ivor W. Tsang于2012年在国际机器学习会议上提出的《Learning with Augmented Features for Heterogeneous Domain Adaptation》。研究指出通过特征增强技术,可以有效提升在不同领域间迁移学习的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • https://sites.google.com/site/xyzliwen/


      Wen Li, Lixin Duan, Dong Xu, and Ivor W.H. Tsang, “Learning with Augmented Features for Supervised and Semi-supervised Heterogeneous Domain Adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI ). [Preprint][Appendix][codes]

    • Lixin Duan, Dong Xu, and Ivor W. Tsang, “Learning with Augmented Features for Heterogeneous Domain Adaptation,” in Proceedings of International Conference on Machine Learning (ICML), pp. 711–718, 2012. [pdf] [bib]


    • http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
    • P. Zhu, L. Zhang, W. Zuo, and D. Zhang, “From Point to Set: Extend the Learning of Distance Metrics,” In ICCV 2013. (paper) (code) (We extended the metric learning from point-to-point to point-to-set and set-to-set!)



    评论 3
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值