1.DSL查询文档
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
1.1.DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
查询所有:查询出所有数据,一般测试用。例如:match_all
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
match_query
multi_match_query
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
ids
range
term
地理(geo)查询:根据经纬度查询。例如:
geo_distance
geo_bounding_box
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
bool
function_score
查询的语法基本一致:
GET /indexName/_search
{
"query": {
"查询类型": {
"查询条件": "条件值"
}
}
}
我们以查询所有为例,其中:
查询类型为match_all
没有查询条件
// 查询所有
GET /indexName/_search
{
"query": {
"match_all": {
}
}
}
其它查询无非就是查询类型、查询条件的变化。
1.2.全文检索查询
1.2.1.使用场景
全文检索查询的基本流程如下:
对用户搜索的内容做分词,得到词条
根据词条去倒排索引库中匹配,得到文档id
根据文档id找到文档,返回给用户
比较常用的场景包括:
商城的输入框搜索
百度输入框搜索
1.2.2.基本语法
常见的全文检索查询包括:
match查询:单字段查询
multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}
mulit_match语法如下:
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}
1.3.精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
term:根据词条精确值查询
range:根据值的范围查询
1.3.1.term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
// term查询
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": "VALUE"
}
}
}
}
1.3.2.range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
// range查询
GET /indexName/_search
{
"query": {
"range": {
"FIELD": {
"gte": 10, // 这里的gte代表大于等于,gt则代表大于
"lte": 20 // lte代表小于等于,lt则代表小于
}
}
}
}
1.3.3.总结
精确查询常见的有哪些?
term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
range查询:根据数值范围查询,可以是数值、日期的范围
1.4.地理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html
常见的使用场景包括:
携程:搜索我附近的酒店
滴滴:搜索我附近的出租车
微信:搜索我附近的人
1.4.1.矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
// geo_bounding_box查询
GET /indexName/_search
{
"query": {
"geo_bounding_box": {
"FIELD": {
"top_left": { // 左上点
"lat": 31.1,
"lon": 121.5
},
"bottom_right": { // 右下点
"lat": 30.9,
"lon": 121.7
}
}
}
}
}
1.4.2.附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
// geo_distance 查询
GET /indexName/_search
{
"query": {
"geo_distance": {
"distance": "15km", // 半径
"FIELD": "31.21,121.5" // 圆心
}
}
}
1.5.复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
function score 查询中包含四部分内容:
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
过滤条件:filter部分,符合该条件的文档才会重新算分
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
weight:函数结果是常量
field_value_factor:以文档中的某个字段值作为函数结果
random_score:以随机数作为函数结果
script_score:自定义算分函数算法
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
multiply:相乘
replace:用function score替换query score
其它,例如:sum、avg、max、min
function score的运行流程如下:
1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
2)根据过滤条件,过滤文档
3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
过滤条件:决定哪些文档的算分被修改
算分函数:决定函数算分的算法
运算模式:决定最终算分结果
function score query定义的三要素是什么?
过滤条件:哪些文档要加分
算分函数:如何计算function score
加权方式:function score 与 query score如何运算
1.5.3.布尔查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
must:必须匹配每个子查询,类似“与”
should:选择性匹配子查询,类似“或”
must_not:必须不匹配,不参与算分,类似“非”
filter:必须匹配,不参与算分
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
其它过滤条件,采用filter查询。不参与算分
2.搜索结果处理
搜索的结果可以按照用户指定的方式去处理或展示。
2.1.排序
elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
2.1.1.普通字段排序
keyword、数值、日期类型排序的语法基本一致。
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"FIELD": "desc" // 排序字段、排序方式ASC、DESC
}
]
}
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推.
2.1.2.地理坐标排序
地理坐标排序略有不同。
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance" : {
"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
"order" : "asc", // 排序方式
"unit" : "km" // 排序的距离单位
}
}
]
}
这个查询的含义是:
指定一个坐标,作为目标点
计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
根据距离排序
2.2.分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
from:从第几个文档开始
size:总共查询几个文档
类似于mysql中的limit ?, ?
2.2.1.基本的分页
分页的基本语法如下:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 0, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}
2.2.2.深度分页问题
现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 990, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}
这里是查询990开始的数据,也就是 第990~第1000条 数据。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。
那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?
当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
针对深度分页,ES提供了两种解决方案,官方文档:
search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。
2.2.3.小结
分页查询的常见实现方案以及优缺点:
from + size:
优点:支持随机翻页
缺点:深度分页问题,默认查询上限(from + size)是10000
场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
after search:
优点:没有查询上限(单次查询的size不超过10000)
缺点:只能向后逐页查询,不支持随机翻页
场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
scroll:
优点:没有查询上限(单次查询的size不超过10000)
缺点:会有额外内存消耗,并且搜索结果是非实时的
场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。
2.3.2.实现高亮
高亮的语法:
GET /hotel/_search
{
"query": {
"match": {
"FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
}
},
"highlight": {
"fields": {
"FIELD": { // 指定要高亮的字段
"pre_tags": "<em>", // 用来标记高亮字段的前置标签
"post_tags": "</em>" // 用来标记高亮字段的后置标签
}
}
}
}
注意:
高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
2.4.总结
查询的DSL是一个大的JSON对象,包含下列属性:
query:查询条件
from和size:分页条件
sort:排序条件
highlight:高亮条件

3.RestClient查询文档
文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:
1)准备Request对象
2)准备请求参数
3)发起请求
4)解析响应
3.1.快速入门
我们以match_all查询为例
3.1.1.发起查询请求

代码解读:
第一步,创建SearchRequest对象,指定索引库名
第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
第三步,利用client.search()发送请求,得到响应
这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:
3.1.2.解析响应
响应结果的解析:

3.1.4.小结
查询的基本步骤是:
创建SearchRequest对象
准备Request.source(),也就是DSL。
① QueryBuilders来构建查询条件
② 传入Request.source() 的 query() 方法
发送请求,得到结果
解析结果(参考JSON结果,从外到内,逐层解析)