Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the
sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines).
These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
思路:定义一个数组计算每列之和,之后判断该和是否是最大
java AC代码:
import java.util.Scanner;
public class ZOJ_1016 {
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
int n=s.nextInt();
for(int i=0;i<n;i++){
int m=s.nextInt();
int arr[]=new int[2*m];
for(int j=0;j<m;j++)
arr[s.nextInt()+j]=1;
int flag=0;
for(int j=0;j<2*m;j++){
if(arr[j]!=0){
flag++;
int num=1;
for(int k=j;k>=0;k--){
if(arr[k]==2)num++;
if(arr[k]==0){
arr[k]=2;
break;
}
}
System.out.print(num);
if(flag<m)System.out.print(" ");
}
}
System.out.println();
}
}
}