题目描述:
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is
4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
这个题想就是用动态规划的方法去做,但是一开始我陷入了误区,我思考的是dp[i]要么等于dp[i-1],要么等于dp[i-1]+1.这样讨论起来就比较复杂了。
这个题的递归式是:dp[i] = max{dp[j] + 1,dp[i]} 其中j < i && nums[j] < nums[i]
然后用自下而上的动态规划算法即可求解:
public class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length<2)
return nums.length;
int[] dp=new int[nums.length];
Arrays.fill(dp, 1);int max=1;
for(int i=1;i<nums.length;i++){
for(int j=0;j<i;j++){
if(nums[j]<nums[i]&&dp[j]+1>dp[i]){
dp[i]=dp[j]+1;
if(dp[i]>max)
max=dp[i];
}
}
}
return max;
}
}