红外小目标检测NARM文献 | 方法对比 |数据集描述

该博客讨论了多种基于目标与背景分离的方法在处理红外小目标检测时的优缺点。针对强边缘和非目标干扰的问题,提出了一种结合非凸秩近似最小化(NRAM)和l2,1范数的新方法,旨在改善目标恢复并抑制背景噪声。文章通过实例比较了不同方法的性能,并指出新方法在处理复杂背景和边缘问题上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对比基于目标与背景分离的典型方法特点

Methods Advantages Disadvantages
IPI Works well with uniform scenes. Over-shrinks the small targets, leaving residuals inthe target image, time consuming.
NIPPS Works well when strong edges and non-target interferences are few. Difficult to estimate rank of data, fails to eliminate strong edges and non-target interference.
ReWIPI Works well when background changes slowly. Sensitive to rare highlight borders, performance degrading with the increasing of complexity.
LRR Works well with simple scenes. Cannot handle complex backgrounds.
LRSR Works well with homogeneous backgrounds. Difficult to choose two dictionaries simultaneously, leaving noise in target component.
FBOD +GGTOD Work well with sky backg
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值