POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)

本文介绍了一种算法,用于在给定的整数序列中找到最长的有序子序列。通过两个实现版本,一种使用O(n^2)的时间复杂度,另一种优化为O(n log n),该文详细解释了算法原理及其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 38980 Accepted: 17119

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1a2, ...,  aN) be any sequence ( ai1ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion



n*n算法


#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>

using namespace std;

int n;
int a[1001];
int dp[1010];

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        int maxx = -1;
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=0;i<n;i++)
        {
            dp[i] = 1;
            for(int j=0;j<i;j++)
            {
                if(a[i]>a[j] && dp[j]+1>dp[i])
                {
                    dp[i] = dp[j] + 1;
                }
            }
            if(maxx < dp[i])
            {
                 maxx = dp[i];
            }
        }
        printf("%d\n",maxx);
    }
    return 0;
}




n*logn算法:

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

#define inf 999999

using namespace std;

int n;
int dp[1010];
int a[1010];

int res(int len,int num)
{
    int l = 0,r = len;
    while(l!=r)
    {
        int mid = (l+r)>>1;
        if(dp[mid] == num)
        {
            return mid;
        }
        else if(dp[mid]<num)
        {
            l = mid + 1;
        }
        else if(dp[mid]>num)
        {
            r = mid;
        }
    }
    return l;
}

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        int len = 1;
        dp[0] = -1;
        for(int i=1;i<=n;i++)
        {
            dp[i] = inf;
            int k = res(len,a[i]);
            if(k == len)
            {
                len++;
            }
            dp[k] = a[i];
        }
        printf("%d\n",len-1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值