机器学习07-(中文分词、样本类别均衡化、置信概率、k-means聚类算法、均值漂移聚类算法)

机器学习-07

中文分词(jieba)

https://github.com/fxsjy/jieba

样本类别均衡化

上采样与下采样处理样本类别均衡化

下采样:把样本数据量大的那一类样本减少到与数据量小的那一类样本数量相近。

上采样:把样本数据量小的那一类样本增加到与数据量大的那一类样本数量相近。

通过类别权重的均衡化,使所占比例较小的样本权重较高,而所占比例较大的样本权重较低,以此平均化不同类别样本对分类模型的贡献,提高模型性能。

样本类别均衡化相关API:

model = svm.SVC(kernel='linear', class_weight='balanced')
还可以这么写:class_weight={
   
   0:0.9, 1:0.1}


model.fit(train_x, train_y)

案例:修改线性核函数的支持向量机案例,基于样本类别均衡化读取imbalance.txt训练模型。

... ...
... ...
data = np.loadtxt('../data/imbalance.txt', delimiter=',', dtype='f8')
x = data[:, :-1]
y = data[:, -1]
train_x, test_x, train_y, test_y = \
    ms.train_test_split(x, y, test_size=0.25, random_state=5)
# 基于线性核函数的支持向量机分类器
model = svm.SVC(kernel='linear', class_weight='balanced')
model.fit(train_x, train_y)
... ...
... ...

LR  SVM  NB  Tree

置信概率

根据样本与分类边界的距离远近,对其预测类别的可信程度进行量化,离边界越近的样本,置信概率越低,反之,离边界越远的样本,置信概率高。

获取每个样本的置信概率相关API:

# 在获取模型时,给出超参数probability=True
model = svm.SVC(kernel='rbf', C=600, gamma=0.01, probability=True)
预测结果 = model.predict(输入样本矩阵)
# 调用model.predict_proba(样本矩阵)可以获取每个样本的置信概率矩阵
置信概率矩阵 = model.predict_proba(输入样本矩阵)

置信概率矩阵格式如下:

类别1 类别2
样本1 0.8 0.2
样本2 0.9 0.1
样本3 0.5 0.5

聚类模型

分类(class)与聚类(cluster)不同,分类是有监督学习模型,聚类属于无监督学习模型。聚类讲究使用一些算法把样本划分为n个群落。一般情况下,这种算法都需要计算欧氏距离。

欧氏距离即欧几里得距离。
P ( x 1 ) − Q ( x 2 ) : ∣ x 1 − x 2 ∣ = ( x 1 − x 2 ) 2 P ( x 1 , y 1 ) − Q ( x 2 , y 2 ) : ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 P ( x 1 , y 1 , z 1 ) − Q ( x 2 , y 2 , z 2 ) : ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 P(x_1) - Q(x_2): |x_1-x_2| = \sqrt{(x_1-x_2)^2} \\ P(x_1,y_1) - Q(x_2,y_2): \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \\ P(x_1,y_1,z_1) - Q(x_2,y_2,z_2): \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} \\ P(x1)Q(x2):x1x2=(x1x2)2 P(x1,y1)Q(x2,y2):(x1x2)2+(y1y2)2 P(x1,y1,z1)Q(x2,y2,z2):(x1x2

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YEGE学AI算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值