题目:
给定一个字符串,仅由a,b,c 3种小写字母组成。当出现连续两个不同的字母时,你可以用另外一个字母替换它,如 有ab或ba连续出现,你把它们替换为字母c; 有ac或ca连续出现时,你可以把它们替换为字母b; 有bc或cb 连续出现时,你可以把它们替换为字母a。 你可以不断反复按照这个规则进行替换,你的目标是使得最终结果所得到的字符串尽可能短,求最终结果的最短长度。
输入:字符串。长度不超过200,仅由abc三种小写字母组成。
输出: 按照上述规则不断消除替换,所得到的字符串最短的长度。
例如:输入cab,输出2。因为我们可以把它变为bb或者变为cc。
输入bcab,输出1。尽管我们可以把它变为aab -> ac -> b,也可以把它变为bbb,但因为前者长度更短,所以输出1。
函数头部: C/C++ int minLength(const char *s); Java: public class Main { public static int minLength(String s); }
解答:
设a的个数为x , b的个数为y , c的个数为z。下面以 x,y,z 来表示abc的个数
最后个数和abc顺序无关,只与abc的个数有关
这个结论的证明简单说一下,(下述情况,所有字符都为一种的除外)
这个可以用由局部推整体证明,
1.当个abc数都小于等于5,穷举可证明,这里就不列出来了,
2.当abc中有大于5数量的,则不同字符串交汇处都符合上述小于等于5的情况,对等于5的情况消去字符让abc数量都小于等于2,再扩大到5再消,直至到整体abc数量都小于等于5为止,由此证明整体abc数量大于5的情况也符合这个命题。
0,1,N,-->(因bcc-->b)0,1,2(N是偶数)或0,1,1(N是奇数)
假设z=y=x,则可以很容易推出xa,yb,zc可以转换成a,b,c
1. aabbcc-->acac-->abc
2. x,x,x-->x-2,x-2,x+2-->x-1,x-1,x-1-->1,1,1
当x<=y<=z,其他同样可推,这里取其中一种顺序
x,y,z-->1,y-x+1,z-x+1-->0,y-x+1+1,z-x+1-1
1. 当y-x+2是偶数,
0,y-x+2,z-x-->(y-x+2)/2,(y-x+2)/2,z-x-(y-x+2)/2-->1,1,z-x-((y-x+2)/2) *2 +1-->0,2, z-x -(y-x+2)=(z-y-2)
当(z-y-2)是偶数=bbcc=bac=cc==2
当(z-y-2)是奇数=bbc=ba=c==1
2.当y-x+2是奇数 0,y-x+2,z-x-->(y-x+2)/2,(y-x+2)/2+1,z-x-(y-x+2)/2-->1,2,z-x-((y-x+2)/2) *2 +1-->0,3, z-x -(y-x+2)=(z-y-2)
因bbbcc=bbac=bcc=ac=b和bbbc=bba=bc=a ==1
#define MAX(a,b) ((a)>(b)?(a):(b))
int minLength(const char *s)
{
int alllen=0;
int a_num=0,b_num=0,c_num=0;
const char *ps=s;
int i=0;
int max_1z,max_2y,max_3x;//对abc数量排序用
if(NULL==s||(alllen=strlen(s))==0)
return 0;
for(i=0;i<alllen;++i,++ps)
{//得到abc的长度
switch(*ps)
{
case 'a':
++a_num;
break;
case 'b':
++b_num;
break;
case 'c':
++c_num;
break;
default:
printf("%d,%d\n",i,alllen);
break;
}
}
if((a_num+b_num+c_num)!=alllen)
return -1;
//判断是否只有一种字符组成
if(a_num==alllen||b_num==alllen||c_num==alllen)
return alllen;
//对得到的字符个数排序max_1z>=max_2y>=max_3x
if(a_num>=b_num)
{
max_1z=MAX(a_num,c_num);
max_2y=MAX(a_num+c_num-max_1z,b_num);
max_3x=alllen-max_1z-max_2y;
}
else
{
max_1z=MAX(b_num,c_num);
max_2y=MAX(b_num+c_num-max_1z,a_num);
max_3x=alllen-max_1z-max_2y;
}
//判断奇偶性
if((max_2y-max_3x+2)%2!=0||(max_1z-max_2y-2)%2!=0)
return 1;
if((max_1z-max_2y-2)%2==0)
return 2;
return -1;//不会执行
}
经群里 @爱东风细雨 的提醒,想了下。果然是复杂了,这里谢谢@爱东风细雨 的提醒
0,1,N,-->(因bcc-->b)0,1,2(N是偶数)或0,1,1(N是奇数)
0,1,2->0,1,0就是说当c个数为偶数时可以全部消掉,同理可推ab也是
x,y,z-->M+i,N+j,P+k (其中MNP是偶数,ijk为1或者2,xyz为偶数就为2,奇数为1)
-->i,j,k
当xyz为偶数时aabbcc=abc=aa==2(aabbcc=aabb=aa,原理:0,1,2->0,1,0)
当xyz为奇数时abc=cc==2
当一奇两偶时abbcc=cac=bc=a==1
当两奇一偶时abcc=aac=ab=c==1
结论:当xyz奇偶相同时为2,不同为1
代码排序部分就不用了。直接判断abc个数的奇偶性就可以了。
int minLength(const char *s)
{
int alllen=0;
int a_num=0,b_num=0,c_num=0;
const char *ps=s;
int i=0;
if(NULL==s||(alllen=strlen(s))==0)
return 0;
for(i=0;i<alllen;++i,++ps)
{//得到abc的长度
switch(*ps)
{
case 'a':
++a_num;
break;
case 'b':
++b_num;
break;
case 'c':
++c_num;
break;
default:
printf("%d,%d\n",i,alllen);
break;
}
}
if((a_num+b_num+c_num)!=alllen)
return -1;
//判断是否只有一种字符组成
if(a_num==alllen||b_num==alllen||c_num==alllen)
return alllen;
//判断奇偶性
if(a_num%2==b_num%2&&a_num%2==c_num%2)
return 2;
else
return 1;
return -1;//不会执行
}