【哥德巴赫猜想】LightOJ Goldbach`s Conjecture 1259

本文探讨了哥德巴赫猜想,并提供了一种算法来验证该猜想对于小于等于10^7的所有偶数是否成立。通过预先计算素数并使用高效的数据结构,实现了快速检查任意给定整数是否为两个素数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1259 - Goldbach`s Conjecture
Time Limit: 2 second(s)Memory Limit: 32 MB

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

Output for Sample Input

2

6

4

Case 1: 1

Case 2: 1

Note

1.      An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...


题意:

一个数可以有多少种可能是由两个素数相加得到的。

解题思路:

哥德巴赫猜想,此题需要素数打表,还要注意打表后的判断方法,不能再采用普通的枚举算法,会超时。数组一定要开成bool型的,否则超内存。

AC代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>

using namespace std;

int prime[700000];
bool is_prime[10000000];
int tot;

void solve()
{
    tot=0;
    is_prime[0]=is_prime[1]=1;
    for(int i=2;i<10000000;i++)
        if(!is_prime[i]){
            prime[tot++]=i;
            for(int j=i*2;j<10000000;j+=i){
                is_prime[j]=1;
            }
        }
}

int main()
{
    solve();
    int t;
    int xp=0;
    scanf("%d",&t);
    while(t--){
        int n;
        scanf("%d",&n);
        int res=0;
        for(int i=0;prime[i]<=n/2;i++){
            int j=n-prime[i];
            if(!is_prime[j]) res++;
        }
        printf("Case %d: %d\n",++xp,res);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值