SIMLOCK feature

本文介绍了SIMLOCK特性的实现原理及不同平台之间的差异。探讨了Qualcomm解决方案中的具体应用,并解释了ICCcardProxy如何处理PersoLock状态变化。此外,还说明了APP在SIMLOCK特性中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. SIMLOCK feature 由modem实现,在modem中提前设置好运营商制定的


2.  各个平台实现有差异:

    8916  platform not support slot-1 and slot-2 have the difference simlock, This is old simlock. 

    8994/8909 platform support slot-1 and slot-2 have the difference simlock, This is new simlock.


3. Qualcomm Solution: 
    00023762: What is the purpose of feature FEATURE_MMGSDI_PERSONALIZATION_SLOT2_LOCKED_ON_SLOT1 ? 


4.  tech doc:

     80-N5899-1_PERSONALIZATION FEATURE DESIGN OVERVIEW

    80-NM328-7_SIM LOCK ENGINE BASED ON HCK OVERVIEW


5.  ICCcardProxy  提供APP进行事件注册,当PersoLock状态变化由modem主动上传后,确定是否通知上层APP


6. APP仅仅提供网络锁的通知和密码输入。


7. APP调用接口传入密码,解锁由modem自完成

修改下面代码,有几个要求:1注册人脸单独拿出来。2识别出来人脸使用红框框出并且周围放上名字,需要中文显示。 CONFIG = { “feature_file”: “employee_features.json”, “attendance_file”: “attendance_records.json”, “yolo_model”: “yolov11s-face.pt”, “recog_model”: “arcfaceresnet100-8.onnx”, “detect_thresh”: 0.7, “match_thresh”: 0.65, “camera_id”: 0, “frame_size”: (640, 480) } class FaceProcessor: def init(self): self.face_model = YOLO(CONFIG[“yolo_model”]) self.recog_model = cv2.dnn.readNetFromONNX(CONFIG[“recog_model”]) self.frame_queue = Queue(maxsize=3) self.detect_queue = Queue(maxsize=2) self.feature_mgr = FeatureManager() self.attendance_log = [] threading.Thread(target=self._capture_thread, daemon=True).start() threading.Thread(target=self._detect_thread, daemon=True).start() def _capture_thread(self): cap = cv2.VideoCapture(CONFIG["camera_id"]) cap.set(3, CONFIG["frame_size"][0]) cap.set(4, CONFIG["frame_size"][1]) while True: ret, frame = cap.read() if not ret: continue if self.frame_queue.qsize() < 3: self.frame_queue.put(frame) def _detect_thread(self): while True: if self.frame_queue.empty(): time.sleep(0.01) continue frame = self.frame_queue.get() results = self.face_model(frame, imgsz=640, conf=CONFIG["detect_thresh"]) boxes = results[0].boxes.xyxy.cpu().numpy() self.detect_queue.put((frame, boxes)) def process_frame(self): if self.detect_queue.empty(): return None frame, boxes = self.detect_queue.get() for box in boxes: x1, y1, x2, y2 = map(int, box) face_img = frame[y1:y2, x1:x2] aligned_face = cv2.resize(face_img, (112, 112)) blob = cv2.dnn.blobFromImage(aligned_face, 1 / 128.0, (112, 112), (127.5, 127.5, 127.5), swapRB=True) self.recog_model.setInput(blob) feature = self.recog_model.forward().flatten() max_sim = 0 matched_id = -1 for emp_id, name, db_feat in self.feature_mgr.get_all_features(): similarity = np.dot(db_feat, feature) if similarity > max_sim and similarity > CONFIG["match_thresh"]: max_sim = similarity matched_id = emp_id # 考勤记录 if matched_id != -1: self._record_attendance(matched_id) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f"ID:{matched_id}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) return frame def _record_attendance(self, user_id): timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") new_record = {"user_id": user_id, "timestamp": timestamp} with threading.Lock(): try: with open(CONFIG["attendance_file"], "r+") as f: records = json.load(f) records.append(new_record) f.seek(0) json.dump(records, f, indent=2) except FileNotFoundError: with open(CONFIG["attendance_file"], "w") as f: json.dump([new_record], f, indent=2) if name == “main”: processor = FaceProcessor() fm = FeatureManager() sample_feature = np.random.randn(512).astype(np.float32) # 示例特征 fm.add_feature(1001, "张三", sample_feature) while True: processed_frame = processor.process_frame() if processed_frame is not None: cv2.imshow("Attendance System", processed_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
03-19
下面人脸识别的代码中,我需要进行修改,显示name而不是显示id,并且这个name是中文需要正确显示。 class FaceProcessor: def __init__(self): # 初始化模型 self.face_model = YOLO(CONFIG["yolo_model"]) self.recog_model = cv2.dnn.readNetFromONNX(CONFIG["recog_model"]) # 初始化队列 self.frame_queue = Queue(maxsize=3) self.detect_queue = Queue(maxsize=2) # 功能模块 self.feature_mgr = FeatureManager() self.attendance_log = [] # 启动线程 threading.Thread(target=self._capture_thread, daemon=True).start() threading.Thread(target=self._detect_thread, daemon=True).start() def _capture_thread(self): """摄像头采集线程""" cap = cv2.VideoCapture(CONFIG["camera_id"]) cap.set(3, CONFIG["frame_size"][0]) cap.set(4, CONFIG["frame_size"][1]) while True: ret, frame = cap.read() if not ret: continue if self.frame_queue.qsize() < 3: self.frame_queue.put(frame) def _detect_thread(self): """人脸检测线程""" while True: if self.frame_queue.empty(): time.sleep(0.01) continue frame = self.frame_queue.get() results = self.face_model(frame, imgsz=640, conf=CONFIG["detect_thresh"]) boxes = results[0].boxes.xyxy.cpu().numpy() self.detect_queue.put((frame, boxes)) def process_frame(self): """主处理循环(在UI线程执行)""" if self.detect_queue.empty(): return None frame, boxes = self.detect_queue.get() for box in boxes: # 人脸对齐 x1, y1, x2, y2 = map(int, box) face_img = frame[y1:y2, x1:x2] aligned_face = cv2.resize(face_img, (112, 112)) # 特征提取 blob = cv2.dnn.blobFromImage(aligned_face, 1 / 128.0, (112, 112), (127.5, 127.5, 127.5), swapRB=True) self.recog_model.setInput(blob) feature = self.recog_model.forward().flatten() # 特征比对 max_sim = 0 matched_id = -1 for emp_id, name, db_feat in self.feature_mgr.get_all_features(): similarity = np.dot(db_feat, feature) if similarity > max_sim and similarity > CONFIG["match_thresh"]: max_sim = similarity matched_id = emp_id # 考勤记录 if matched_id != -1: self._record_attendance(matched_id) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f"ID:{matched_id}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) return frame def _record_attendance(self, user_id): """记录考勤到JSON""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") new_record = {"user_id": user_id, "timestamp": timestamp} with threading.Lock(): # 保证线程安全 try: with open(CONFIG["attendance_file"], "r+") as f: records = json.load(f) records.append(new_record) f.seek(0) json.dump(records, f, indent=2) except FileNotFoundError: with open(CONFIG["attendance_file"], "w") as f: json.dump([new_record], f, indent=2)
03-19
我需要理解下面代码,请详细的分析逻辑: class FaceProcessor: def init(self): self.face_model = YOLO(CONFIG[“yolo_model”]) self.recog_model = cv2.dnn.readNetFromONNX(CONFIG[“recog_model”]) self.frame_queue = Queue(maxsize=9) self.detect_queue = Queue(maxsize=6) self.feature_mgr = FeatureManager() self.attendance_log = [] threading.Thread(target=self._capture_thread, daemon=True).start() threading.Thread(target=self._detect_thread, daemon=True).start() def _capture_thread(self): cap = cv2.VideoCapture(CONFIG["camera_id"]) cap.set(3, CONFIG["frame_size"][0]) cap.set(4, CONFIG["frame_size"][1]) while True: ret, frame = cap.read() if not ret: continue if self.frame_queue.qsize() < 3: self.frame_queue.put(frame) def _detect_thread(self): while True: if self.frame_queue.empty(): time.sleep(1) continue frame = self.frame_queue.get() results = self.face_model(frame, imgsz=640, conf=CONFIG["detect_thresh"]) boxes = results[0].boxes.xyxy.cpu().numpy() self.detect_queue.put((frame, boxes)) def process_frame(self): if self.detect_queue.empty(): return None frame, boxes = self.detect_queue.get() for box in boxes: x1, y1, x2, y2 = map(int, box) face_img = frame[y1:y2, x1:x2] aligned_face = cv2.resize(face_img, (112, 112)) blob = cv2.dnn.blobFromImage(aligned_face, 1 / 128.0, (112, 112), (127.5, 127.5, 127.5), swapRB=True) self.recog_model.setInput(blob) feature = self.recog_model.forward().flatten() max_sim = 0 matched_id = -1 matched_name = "" for emp_id, name, db_feat in self.feature_mgr.get_all_features(): similarity = np.dot(db_feat, feature) if similarity > max_sim and similarity > CONFIG["match_thresh"]: max_sim = similarity matched_id = emp_id matched_name = name if matched_id != -1: self._record_attendance(matched_id) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_img = Image.fromarray(frame_rgb) draw = ImageDraw.Draw(pil_img) try: font = ImageFont.truetype(FONT_PATH, 20) # Windows系统字体 except: font = ImageFont.load_default() # 备选方案(不支持中文) draw.rectangle([x1, y1, x2, y2], outline=(0, 255, 0), width=2) draw.text((x1, max(y1 - 30, 10)), # 防止顶部越界 f"姓名:{matched_name}", font=font, fill=(0, 255, 0)) frame = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) return frame def _record_attendance(self, user_id): timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") new_record = {"user_id": user_id, "timestamp": timestamp} with threading.Lock(): try: with open(CONFIG["attendance_file"], "r+") as f: records = json.load(f) records.append(new_record) f.seek(0) json.dump(records, f, indent=2) except FileNotFoundError: with open(CONFIG["attendance_file"], "w") as f: json.dump([new_record], f, indent=2)
03-20
### AT 命令 SIMLOCK 的使用与配置 AT+CMAR 是一个用于重置设备到默认值的 AT 指令,并且需要输入电话锁码才能执行此命令[^1]。然而,用户关注的是与 SIMLOCK 相关的技术信息和使用方法。以下将详细介绍 SIMLOCK 的相关概念、配置以及使用方法。 #### 1. SIMLOCK 的基本概念 SIMLOCK 是一种用于保护设备免受未经授权使用的功能。它通过绑定特定的 SIM 卡来限制设备的使用范围。如果未插入正确的 SIM 卡,则设备可能无法正常启动或运行。这种机制广泛应用于运营商定制设备中,以确保设备只能在特定网络下使用。 #### 2. AT 命令中的 SIMLOCK 配置 虽然引用内容没有直接提及 SIMLOCK 的具体配置方法,但根据行业标准和常见实践,可以通过以下 AT 命令实现对 SIMLOCK 的管理: - **查询 SIMLOCK 状态** 使用 `AT+WSIMLOCK=?` 查询支持的 SIMLOCK 类型及参数[^4]。这一步可以帮助确认设备是否支持 SIMLOCK 功能及其详细设置。 - **读取当前 SIMLOCK 设置** 使用 `AT+WSIMLOCK=?` 获取当前的 SIMLOCK 配置状态。例如,可以检查设备是否已被锁定至某个运营商或特定 SIM 卡。 - **设置或修改 SIMLOCK** 使用 `AT+WSIMLOCK=<operation>,<slot>,<type>,<value>` 来配置 SIMLOCK。其中: - `<operation>`:操作类型(如启用或禁用 SIMLOCK)。 - `<slot>`:指定 SIM 卡插槽。 - `<type>`:定义 SIMLOCK 的类型(例如基于 IMSI 或 ICCID)。 - `<value>`:实际的锁值或解锁码。 示例代码如下: ```python # 启用 SIMLOCK command = "AT+WSIMLOCK=1,1,0,\"123456\"" print(command) # 禁用 SIMLOCK command = "AT+WSIMLOCK=0,1,0,\"123456\"" print(command) ``` #### 3. 注意事项 - 在执行任何 SIMLOCK 配置之前,请确保已获取正确的解锁码(通常由设备制造商或运营商提供)。 - 不同设备厂商可能对 SIMLOCK 的实现方式略有差异,因此建议参考设备的具体文档或手册。 - 错误输入解锁码可能导致设备永久锁定,务必谨慎操作。 #### 4. 性能模拟与 GPGPU-Sim 的关联 尽管性能模拟(Performance Simulation)与 SIMLOCK 并无直接关系,但引用内容提到的 GPGPU-Sim 可以作为一种工具来分析设备在不同条件下的性能表现[^2]。如果需要评估 SIMLOCK 对设备性能的影响,可以结合此类仿真工具进行测试。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值