Description

Programming contests became so popular in the year 2397 that the governor of New Earck -- the largest human-inhabited planet of the galaxy -- opened a special Alley of Contestant Memories (ACM) at the local graveyard. The ACM encircles a green park, and holds the holographic statues of famous contestants placed equidistantly along the park perimeter. The alley has to be renewed from time to time when a new group of memorials arrives.
When new memorials are added, the exact place for each can be selected arbitrarily along the ACM, but the equidistant disposition must be maintained by moving some of the old statues along the alley.
Surprisingly, humans are still quite superstitious in 24th century: the graveyard keepers believe the holograms are holding dead people souls, and thus always try to renew the ACM with minimal possible movements of existing statues (besides, the holographic equipment is very heavy). Statues are moved along the park perimeter. Your work is to find a renewal plan which minimizes the sum of travel distances of all statues. Installation of a new hologram adds no distance penalty, so choose the places for newcomers wisely!
Input
Output
Pictures show the first three examples. Marked circles denote original statues, empty circles denote new equidistant places, arrows denote movement plans for existing statues.
Sample Input
2 1
2 3
3 1
10 10
Sample Output
1666.6667 1000.0 1666.6667 0.0 【题目大意】 在一个圆上有些间隔相等的点,然后增加点,要求挪动原来的点依旧保证等距,问原来的点需要挪动的总距离。 【思路】 一开始WA是因为觉得所有点挪动的距离应该是一样长的。后来发现需要每一个都分开考虑。#include <iostream> #include<cstdio> #include<cmath> using namespace std; int main() { int a, b; double sum = 0, am, abm, mim, s; while(scanf("%d%d", &a, &b) != EOF) { sum = 0; mim = 0; s = 0; am = 1.0/a*10000; abm = 1.0/(a+b)*10000; for(int i=1; i<a; i++) { mim = fabs(am*i - abm); for(int j=0; j<a+b; j++) { s = fabs(am*i - abm*j); if(s<mim) mim = s; } sum += mim; } printf("%.4lf\n", sum); } return 0; }