经典算法思想题目-爬楼梯问题

文章介绍了使用动态规划方法解决爬楼梯问题,其中关键步骤包括定义子问题(dp[n]=dp[n-1]+dp[n-2]),确定边界条件(dp[0]=1,dp[1]=1),并提供了两种解决方案,一种具有O(n)的时间复杂度和O(n)的空间复杂度,另一种优化后空间复杂度降为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

爬楼梯问题

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意: 给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

解法:动态规划

动态规划(Dynamic Programming,DP)是一种将复杂问题分解成小问题求解的策略,但与分治算法不同的是,分治算法要求各子问题是相互独立的,而动态规划各子问题是相互关联的。

分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

我们使用动态规划求解问题时,需要遵循以下几个重要步骤:

  • 定义子问题
  • 实现需要反复执行解决的子子问题部分
  • 识别并求解出边界条件

第一步:定义子问题

如果用 dp[n] 表示第 n 级台阶的方案数,并且由题目知:最后一步可能迈 2 个台阶,也可迈 1 个台阶,即第 n 级台阶的方案数等于第 n-1 级台阶的方案数加上第 n-2 级台阶的方案数

第二步:实现需要反复执行解决的子子问题部分

dp[n] = dp[n−1] + dp[n−2]

第三步:识别并求解出边界条件

// 第 0 级 1 种方案 
dp[0]=1 
// 第 1 级也是 1 种方案 
dp[1]=1

最后一步:把尾码翻译成代码,处理一些边界情况

let climbStairs = function(n) {
    let dp = [1, 1]
    for(let i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n]
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

优化空间复杂度:

let climbStairs = function(n) {
    let res = 1, n1 = 1, n2 = 1
    for(let i = 2; i <= n; i++) {
        res = n1 + n2
        n1 = n2
        n2 = res
    }
    return res
}

空间复杂度:O(1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静香是个程序媛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值