HDU-1005 Number Sequence

本文探讨了一种特定数列的周期性规律,通过分析数列f(n)=(A*f(n-1)+B*f(n-2))mod7的特性,发现其在一定长度后会重复出现相同的数值序列。文章提供了一种高效算法,用于快速计算数列中任意项的值,避免了直接递归或迭代计算导致的时间复杂度过高的问题。

See the article on https://dyingdown.github.io/2019/12/19/HDU-1005%20Number-Sequence/

Number Sequence

A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).

Input

The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.

Output

For each test case, print the value of f(n) on a single line.

Sample Input

1 1 3
1 2 10
0 0 0

Sample Output

2
5

Analysis

This problem seems like a very huge problem, however, the answers have some certain regular pattern. For f [ n ] f[n] f[n], it’s consisted of a basic number array. That means after a certain number of numbers, the numbers will be the same as begin. Like 1 , 2 , 5 , 6 , 1 , 2 , 5 , 6 , 1 , 2 , 5 , 6 ⋯ 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6 \cdots 1,2,5,6,1,2,5,6,1,2,5,6. So just loop to find the recycle number.

Code

Not that if you don’t define boarder for i, it will be time limit exceeded. And the biggest recycled number is no bigger than 49.

#include<bits/stdc++.h>

using namespace std;

int f[100];
int main() {
	int a, b, n;
	while(cin >> a >> b >> n, a, b, n) {
		f[1] = f[2] = 1;
		int i = 3;
		for(; i < 50; i ++) {
			f[i] = (a * f[i - 1] + b * f[i - 2]) % 7;
			if(f[i - 1] == 1 and f[i] == 1) {
				break;
			}
		}
		f[0] = f[i - 2];
		cout << f[n % (i - 2)] << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值