深度学习之线性图像分类

本文介绍了图像分类问题,重点讨论了使用线性分类器处理CIFAR-10数据集的方法。从传统的计算方法如余弦距离和K近邻到线性分类,详细解释了线性分类器的工作原理,包括权重矩阵、偏置向量和损失函数的优化,以及softmax函数在多类别分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:问题介绍

我们将介绍图像分类问题。所谓图像分类问题,就是已有固定的分类标签集合,然后对于输入的图像,从分类标签集合中找出一个分类标签,最后把分类标签分配给该输入图像。虽然看起来挺简单的,但这可是计算机视觉领域的核心问题之一,并且有着各种各样的实际应用。在后面的课程中,我们可以看到计算机视觉领域中很多看似不同的问题(比如物体检测和分割),都可以被归结为图像分类问题。

在这里插入图片描述
以上图为例,图像分类模型读取该图片,并生成该图片属于集合 {cat, dog, hat, mug}中各个标签的概率。需要注意的是,对于计算机来说,图像是一个由数字组成的巨大的3维数组。在这个例子中,猫的图像大小是宽248像素,高400像素,有3个颜色通道,分别是红、绿和蓝(简称RGB)。如此,该图像就包含了248X400X3=297600个数字,每个数字都是在范围0-255之间的整型,其中0表示全黑,255表示全白。我们的任务就是把这些上百万的数字变成一个简单的标签,比如“猫”。

在这里插入图片描述

二:数据集介绍(CIFAR-10)

10类标签 50000个训练数据 10000个测试数据 大小均为32*32

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值