HDU 1395 2^x mod n = 1

2^x mod n = 1

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15873    Accepted Submission(s): 4937


Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
 

Input
One positive integer on each line, the value of n.
 

Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.
 

Sample Input
  
2 5
 

Sample Output
  
2^? mod 2 = 1 2^4 mod 5 = 1
 

Author
MA, Xiao
 

Source
 

Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:   2462  2421  2521  1695  2466
题意很简单,不多说了,直接看代码吧
#include<stdio.h>
#include<string.h>
int main()
{
	int n,m,i,j,k,l;
	while(scanf("%d",&n)!=EOF)
	{
		m=1;
		int ans=0;
		if(n%2==0||n==1)
		printf("2^? mod %d = 1\n",n);
		else
		{
			while(1)
			{
				m=m*2;
			    m=m%n;
			    ans++;
			    if(m==1)
			    {
			   	   break;
			    }
			}
			printf("2^%d mod %d = 1\n",ans,n);
			
		}
	}
	return 0;
}

 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值