Success Rate of iBots in OBIEE

本文详细介绍了如何通过Oracle BI EE配置调度器以获取iBots的成功率趋势,并提供了关键表格及其聚合方法的使用指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One of my client had a requirement to see the weekly trend on iBot Success Rate.

Prior to this I had never worked on iBots. So it took some time for me to first explore on iBots Configuration.

The best site to refer for Scheduler Configuration is VenkatKrishnan’s blog.

http://oraclebizint.wordpress.com/2007/09/13/oracle-bi-ee-10133-configuring-delivers-ibots/

So I am not gonna tell you about Scheduler Configuration and all.

Rather, I will focus on the uses of those Scheduler tables to get the success rate of iBots.

Basically there are four tables related to Scheduler Configuration:

S_NQ_JOB : Whenever you create an iBot, a new record is created in this table with a unique Job Id.

S_NQ_INSTANCE : You can schedule an iBot to run n number of times. So whenever an iBot is run, a new instance is created in this table with unique Instance Id but the Job Id would be same.

S_NQ_JOB_PARAM: This table stores Job parameters related to each iBot.

S_NQ_ERR_MSG: All the error messages related to iBots gets stored in this table.

Now import all these tables in rpd. Create physical joins as follows:

S_NQ_JOB.JOB_ID = S_NQ_INSTANCE.JOB_ID

S_NQ_ERR_MSG.JOB_ID = S_NQ_INSTANCE.JOB_ID

S_NQ_JOB_PARAM.JOB_ID = S_NQ_INSTANCE.JOB_ID


Now, in the BMM layer drag all these tables together and create logical columns in Fact with an aggregation of count.

Count of iBots Completed : CASE WHEN S_NQ_INSTANCE.STATUS =0 THEN S_NQ_INSTANCE.INSTANCE_ID

Count of iBots Failed : CASE WHEN S_NQ_INSTANCE.STATUS = 2 THEN S_NQ_INSTANCE.INSTANCE_ID

Count of iBots Running : CASE WHEN S_NQ_INSTANCE.STATUS = 1 THEN S_NQ_INSTANCE.INSTANCE_ID

Count of iBots Timed out : CASE WHEN S_NQ_INSTANCE.STATUS = 5 THEN S_NQ_INSTANCE.INSTANCE_ID

Count of iBots Cancelled : CASE WHEN S_NQ_INSTANCE.STATUS = 3 THEN S_NQ_INSTANCE.INSTANCE_ID

Count of iBots Instance : INSTANCE_ID

% of iBots Completed : Count of iBots Completed/Count of iBots Instance *100

% of iBots Failed : Count of iBots Failed/Count of iBots Instance *100

and so on for % of iBots Running, Cancelled and Timed Out.


Drag all the Logical tables in Presentation layer, check for consistency, save and load the repository.

Now, log in to the presentation services and create the report.


资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,与人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式和规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值