机器学习基础100天---day03 多元线性回归

本文介绍了一种使用线性回归模型预测初创企业盈利能力的方法,通过分析研发支出、行政费用、市场营销支出等关键因素,结合不同州的市场环境,构建了一个有效的预测模型。该模型能够帮助投资者和企业家更好地理解哪些因素对初创企业的利润产生最大影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R&D Spend,Administration,Marketing Spend,State,Profit
165349.2,136897.8,471784.1,New York,192261.83
162597.7,151377.59,443898.53,California,191792.06
153441.51,101145.55,407934.54,Florida,191050.39
144372.41,118671.85,383199.62,New York,182901.99
142107.34,91391.77,366168.42,Florida,166187.94
131876.9,99814.71,362861.36,New York,156991.12
134615.46,147198.87,127716.82,California,156122.51
130298.13,145530.06,323876.68,Florida,155752.6
120542.52,148718.95,311613.29,New York,152211.77
123334.88,108679.17,304981.62,California,149759.96
101913.08,110594.11,229160.95,Florida,146121.95
100671.96,91790.61,249744.55,California,144259.4
93863.75,127320.38,249839.44,Florida,141585.52
91992.39,135495.07,252664.93,California,134307.35
119943.24,156547.42,256512.92,Florida,132602.65
114523.61,122616.84,261776.23,New York,129917.04
78013.11,121597.55,264346.06,California,126992.93
94657.16,145077.58,282574.31,New York,125370.37
91749.16,114175.79,294919.57,Florida,124266.9
86419.7,153514.11,0,New York,122776.86
76253.86,113867.3,298664.47,California,118474.03
78389.47,153773.43,299737.29,New York,111313.02
73994.56,122782.75,303319.26,Florida,110352.25
67532.53,105751.03,304768.73,Florida,108733.99
77044.01,99281.34,140574.81,New York,108552.04

#_*_coding:utf-8_*_

import pandas as pd
import numpy as np

dataset = pd.read_csv('../data/50_Startups.csv')

X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 4].values
#抽取类别数据,转换成虚拟变量
city = dataset.iloc[ : , 3].values
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()

#躲避虚拟变量陷阱       排除多个变量之间相互关联

X = X[:,1:]

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size= 0.25 ,random_state=0)

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,Y_train)

y_pred = model.predict(X_test)
print(y_pred)
print('train score: {}'.format(model.score(X_train,Y_train)))
print('test score: {}'.format(model.score(X_test,Y_test)))

更多请参考大神GitHub

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值