CodeForces - 630N Forecast (解一元二次方程组)

本文介绍了一种解决一元二次方程的方法,并通过具体的代码实现了方程ax² + bx + c = 0的求解过程。文章强调了输出根时应先输出较大的根。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CodeForces - 630N
Time Limit: 500MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u

 Status

Description

The Department of economic development of IT City created a model of city development till year 2100.

To prepare report about growth perspectives it is required to get growth estimates from the model.

To get the growth estimates it is required to solve a quadratic equation. Since the Department of economic development of IT City creates realistic models only, that quadratic equation has a solution, moreover there are exactly two different real roots.

The greater of these roots corresponds to the optimistic scenario, the smaller one corresponds to the pessimistic one. Help to get these estimates, first the optimistic, then the pessimistic one.

Input

The only line of the input contains three integers a, b, c ( - 1000 ≤ a, b, c ≤ 1000) — the coefficients ofax2 + bx + c = 0 equation.

Output

In the first line output the greater of the equation roots, in the second line output the smaller one. Absolute or relative error should not be greater than 10 - 6.

Sample Input

Input
1 30 200
Output
-10.000000000000000
-20.000000000000000

Source

//题意:
给出一元二次方程组,a*x*x+b*x+c=0,给出a,b,c,求解此方程组。
注意:输出时大的一个解首先输出。。。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
#define N 10010
#define M 1000000007
using namespace std;
int main()
{
	int a,b,c;
	while(scanf("%d%d%d",&a,&b,&c)!=EOF)
	{
		double p=(double)sqrt(b*b-4*a*c);
		double x1=(-1.0*b+p)/(2*a);
		double x2=(-1.0*b-p)/(2*a);
		if(x1<x2)
			printf("%.7lf\n%.7lf\n",x2,x1);
		else
			printf("%.7lf\n%.7lf\n",x1,x2);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值