HDU 2639 Bone Collector II

本文介绍了一种解决经典背包问题中求第K优解的方法,通过使用动态规划和优化技巧,实现了对不同价值骨头组合的第K最大价值求解。提供了完整的代码实现,并附带了样例输入输出,适合对背包问题和动态规划感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:传送门
题面:
B o n e C o l l e c t o r I I Bone Collector II BoneCollectorII

Problem Description

The title of this problem is familiar,isn’t it?yeah,if you had took part in the “Rookie Cup” competition,you must have seem this title.If you haven’t seen it before,it doesn’t matter,I will give you a link:
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum … to the K-th maximum.
If the total number of different values is less than K,just ouput 0.

Input

The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the K-th maximum of the total value (this number will be less than 231).

Sample Input

3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1

Sample Output

12
2
0

题目大意:

T T T组数据,每组数据输入 N N N V V V k k k,分别为物品的数量,背包的容量,和你要求的第 k k k优解,每种物品只有一个,输出装这个背包的第 k k k优解

很经典的求第 k k k优解的板子,如果有不大懂的去看我另一篇博客点这里

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <complex>
#include <algorithm>
#include <climits>
#include <queue>
#include <map>
#include <vector>
#include <iomanip>
#define A 1000010
#define B 2010
#define ll long long

using namespace std;
int f[1010][50];
int n, V, k, v[A], w[A], a[A], b[A];

int main() {
    int T;
    cin >> T;
    while (T--) {
        cin >> n >> V >> k;
        for (int i = 1; i <= n; i++) cin >> v[i];
        for (int i = 1; i <= n; i++) cin >> w[i];
        memset(f, 0, sizeof f);
        memset(a, 0, sizeof a);
        memset(b, 0, sizeof b);
        for (int i = 1; i <= n; i++) {
          for (int j = V; j >= w[i]; j--) {
              for (int l = 1; l <= k; l++) {
                  a[l] = f[j][l];
                  b[l] = f[j - w[i]][l] + v[i];
                }
                a[k + 1] = -1;
                b[k + 1] = -1;
                int x = 1, y = 1, o = 1;
                while (o != k + 1 and (a[x] != -1 or b[y] != -1)) {
                    if (a[x] > b[y]) f[j][o] = a[x], x++;
                    else f[j][o] = b[y], y++;
                    if (f[j][o] != f[j][o - 1]) o++;
                }
            }
        }
        cout << f[V][k] << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

良月澪二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值