Android 开源框架Universal-Image-Loader完全解析(四)UNIVERSAL IMAGE LOADER. PART 3---ImageLoader详解

本文详细介绍了Android-Universal-Image-Loader的四个重载方法及其使用方式,包括如何设置显示选项、监听器,并提供了配置建议。

之前的文章,我们重点讲了Android-Universal-Image-Loader的三个主要组件,现在我们终于可以开始使用它了。

Android-Universal-Image-Loader有四个重载方法

void displayImage(String url, ImageView view)
void displayImage(String url, ImageView view, DisplayImageOptions options)
void displayImage(String url, ImageView view, ImageLoadingListener listener)
void displayImage(String url, ImageView view, DisplayImageOptions options, ImageLoadingListener listener)

第一个重载方法

所有东西都很简单。url就是图片的下载地址,ImageView就是需要显示它的imageView控件。这个ViewOption(DisplayOptions)将使用默认配置option(defaultDisplayImageOptions(…))

第二个重载方法

我们可以针对特定的任务做一些特定的option。首先,我会先给一个使用特定操作的例子:

复制代码
DisplayImageOptions options = new DisplayImageOptions.Builder()
.showStubImage(R.drawable.stub_image)
.showImageForEmptyUrl(R.drawable.image_for_empty_url)
.cacheInMemory()
.cacheOnDisc()
.decodingType(DecodingType.MEMORY_SAVING)
.build();
复制代码

• 当真正的图片正在下载,是否需要在ImageView中显示另一张图片,显示什么图片;
• 当遇到空的Image URL时,是否需要在ImageView中显示另一张图片,显示什么图片;
• 是否在内存中缓存已加载的image;
• 是否在磁盘中(file system)缓存已下载的图片;
• 要尽可能快(DecodingType.FAST)还是尽可能节约地使用RAM(DecodingType.MEMORY_SAVING)


所以,我们可以在每次调用displayImage()方法的时候将这些option传递过去,或者在初始化中的configuration中定义默认的option,然后程序中就会使用这些特定的options不管你有没有明确地传递DisplayImageOptions。

第三个重载方法

除此之外,我们可以使用ImageLoadingListener监听图片的下载和显示过程:

public interface ImageLoadingListener {
    void onLoadingStarted();
    void onLoadingFailed();
    void onLoadingComplete();
}

第四个重载方法是最强大的。你可以定制option和监听那些过程

1、为了正常运行,你需要传递给ImageLoader正确的参数。重点是ImageView而不是Image URL。如果你在代码里面创建一个ImageView(而不是使用LayoutInflater),然后将当前的Activity传递给构造函数,而不是application context。

ImageView imageView = new ImageView(getApplicationContext()); // Wrong!

ImageView imageView = new ImageView(MyActivity.this); // Correctly
ImageView imageView = new ImageView(getActivity()); // Correctly (for Fragments)

2、只有当你想加载ImageView图片比设备的屏幕尺寸更大(例如,对于后续的缩放操作),那么你才需要在configuration配置maxImageWidthForMemoryCache(…)和maxImageHeightForMemoryCache(…)参数。在其他情况下,你不需要特殊的配置:这些参数是因为需要考虑缓存bitmap时屏幕大小和内存大小。

3、明智地在configuration中设置线程池大小:大池(线程数>10)允许多线程同时运行,这将极大地影响UI响应的速度。但是它可以通过将这些线程的优先级设置为更低解决:当ImageLoader运行以及更多的图片加载时,低优先级的线程会让UI更具响应性。UI的相应能力对列表视图(如ListView、GridView)来说至关重要(如平滑滚动时),所以你应该配置threadPoolSize(...) and threadPriority(...)参数为你的应用程序选一个最优的配置。

4、memoryCacheSize(...) and memoryCache(...)设置有相互重叠的地方。在一个configuration对象中只使用其中一个。

5、discCacheSize(…),discCacheFileCount(…)和discCache(…)设置有相互重叠的地方。在一个configuration对象中只使用其中一个。

6、如果在App中使用ImageLoader你总是或几乎总要传递相同的加载option(DisplayImageOptions)给displayImage(…)方法,然而一个合理的解决方案时在ImageLoader配置中将这些相同的加载选项设置为默认配置(defaultDisplayImageOptions(...) method)。然后在调用displayImage(…)时你就可以不指明这些option。如果options没有明确传递给这些方法,那么这个任务就会使用默认的options。

7、对于FAST 和 MEMORY_SAVING两种解析类型没有特别的重大的区别,但是推荐对所有种类的列表视图(GridView、ListView)使用FAST(当你需要显示许多小图片)。为图片查看器使用MEMORY_SAVING(当你需要显示大尺寸的图片时)

 

 

 

参考链接:

UNIVERSAL IMAGE LOADER. PART 3

基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于NSGA-III算法的微电网多目标优化调度展开研究,重点介绍了如何利用该先进多目标进化算法解决微电网系统中多个相互冲突的目标(如运行成本最小化、碳排放最低、供电可靠性最高等)的协同优化问题。文中结合Matlab代码实现,详细阐述了NSGA-III算法的基本原理、在微电网调度模型中的建模过程、约束条件处理、目标函数设计以及仿真结果分析,展示了其相较于传统优化方法在求解高维、非线性、多目标问题上的优越性。同时,文档还提供了丰富的相关研究案例和技术支持背景,涵盖电力系统优化、智能算法应用及Matlab仿真等多个方面。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事能源优化领域的工程技术人员;尤其适合正在进行微电网调度、多目标优化算法研究或撰写相关论文的研究者。; 使用场景及目标:①掌握NSGA-III算法的核心思想及其在复杂能源系统优化中的应用方式;②学习如何构建微电网多目标调度模型并利用Matlab进行仿真求解;③为科研项目、毕业论文或实际工程提供算法实现参考和技术支撑。; 阅读建议:建议读者结合文中提供的Matlab代码实例,逐步调试运行并深入理解算法流程与模型构建细节,同时可参考文档中列出的其他优化案例进行横向对比学习,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值