题目描述
据古代传说记载,所罗门王既是智慧的代表,又是财富的象征。他建立了强大而富有的国家,聚集了大批的黄金象牙和钻石,并把这些价值连城的珍宝藏在一个神秘的地方,这就是世人瞩目的“所罗门王的宝藏”。多少个世纪以来,人们一直在寻找这批早已失落的古代文明宝藏,寻找盛产黄金和钻石的宝地。曾经追寻所罗门王宝藏的冒险者们都一去不回,至今没人解开这个谜题。亨利男爵在一次幸运的旅途中意外地得到了三百年前一位葡萄牙贵族留下的写在羊皮卷上的所罗门王的藏宝图和一本寻宝秘籍。在这张藏宝图的诱惑下,亨利男爵邀请约翰上校和勇敢的猎象人夸特曼开始了寻找埋葬在黑暗地底的所罗门王宝藏的艰险历程。他们横穿渺无边际的沙漠和浓荫蔽日的原始森林,越过汹涌澎湃的激流险滩,翻越高耸入云的峻岭雪山,饱尝沙漠的酷热和冰雪严寒,在藏宝图的指引下来到非洲一个原始的神秘国度库库安纳。这里有残酷的人殉制度,有一个拥有一千个妻室的独眼暴君特瓦拉,有像兀鹫一般丑恶诡诈老而不死的女巫加古尔,还有美丽聪慧的绝代佳人弗拉塔。在这片陌生而又险象环生的土地上三位寻宝英雄历尽艰辛,终于在绝代佳人弗拉塔的帮助下在海底深处找到了珍藏这批价值连城宝藏的巨大的藏宝洞。然而在女巫加古尔的精心策划下,一场灭顶之灾正在悄悄逼近。
藏宝洞的洞门十分坚固且洞门紧闭,如果不知道开启洞门的秘密是无法打开藏宝洞的洞门。在藏宝洞的洞门一侧有一个奇怪的矩形密码阵列。根据寻宝秘籍的记载,在密码阵列每行的左侧和每列的顶端都有一颗红宝石按钮。每个按钮都可以向左或向右转动。每向左转动一次按钮,相应的行或列中数字都增 1。每向右转动一次按钮,相应的行或列中数字都减 1。在矩形密码阵列的若干特定位置镶嵌着绿宝石。只有当所有绿宝石位置的数字与藏宝图记载的密码完全相同,紧闭的洞门就会自动缓缓打开。女巫加古尔早已得知开门的秘密。为了阻止寻宝者打开洞门,女巫加古尔为开门的密码阵列设置了全0的初始状态。试图打开洞门的寻宝者如果不能迅速转动按钮使所有绿宝石位置的数字与藏宝图记载的密码完全相同,就会自动启动藏宝洞玄妙的暗器机关,使寻宝者遭到灭顶攻击而死于非命。
您能帮助三位寻宝英雄顺利打开藏宝洞的洞门吗?
编程任务:对于给定的密码阵列,找到获得正确密码的红宝石按钮的转动序列。
输入
输入的第一行中有一个正整数T(T≤5)表示有T组数据。每组数据的第一行有3个正整数n,m和k,表示洞门密码阵列共有n行和m列,0<n,m,k≤1000。各行从上到下依次编号为1,2,…,n;各列从左到右依次编号为1,2,…,m。接下来的k行中每行有三个整数x,y,c,分别表示第k个绿宝石在密码阵列中的位置和密码,x为行号y为列号,c为该位置处的密码。
输出
对于每组数据,用一行输出 Yes 或者 No。输出 Yes 表示存在获得正确密码的红宝石按钮的转动序列。输出 No 则表示无法找到获得正确密码的红宝石按钮的转动序列。
样例输入
2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 1
样例输出
Yes
No
提示
对于100%的数据,1≤n,m,k≤1000,k≤n×m,∣c∣≤1,000,000。
题意就是给你一个全为零的矩阵,通过整行整列的加一减一,让他变为要成的矩阵形式
输入n,m,k就是一个n行,m列的矩阵,接下来k行就是对应的矩阵中的位置的值;
一开始一直写不出来,后来听到一个学长说这道题可以用高斯消元法来做。然后就去学习了一下什么是高斯消元。
全靠队长带,把这道题给搞掉了。
参考这个模版写的https://blog.youkuaiyun.com/pengwill97/article/details/77200372
根据题意可以发现,矩阵通过初等变换得到最终的密码对应的形式,满足PAQ=B这个等式即可,
(P1,P2,P3...Pn){A11 A12 A13...A1m} (Q1,Q2,Q3...Qn)T=B
A21 A22 A23...A2m
....
An1 An2 An3...Anm
展开之后就有n+m个变元,一共有k个方程,最后根据高斯消元,求解,
有解即为Yes,无解即为No
附上AC代码
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int MAXN=2005;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
int gcd(int a,int b){
if(b == 0) return a; else return gcd(b,a%b);
}
inline int lcm(int a,int b){
return a/gcd(a,b)*b;//先除后乘防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var){
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0;i<=var;i++){
x[i]=0;
free_x[i]=true;
}
//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0;k < equ && col < var;k++,col++){// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++){
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k){// 与第k行交换.
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0){// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+1;i<equ;i++){// 枚举要删去的行.
if(a[i][col]!=0){
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
for(j=col;j<var+1;j++){
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
}
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++){ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != 0) return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var){
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - 1; i >= 0; i--){
temp = a[i][var];
for (j = i + 1; j < var; j++){
if (a[i][j] != 0) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return 0;
}
int main(void)
{
// freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
int t;
int equ,var;
cin>>t;
while(t--)
{
int n,m,k,x,y,u;
cin>>n>>m>>k;
memset(a, 0, sizeof(a));
for(int i=0;i<k;i++)
{
cin>>x>>y>>u;
a[i][x-1]=a[i][n-1+y]=1;
a[i][n+m]=u;
}
var=n+m;
equ=k;
int free_num = Gauss(equ,var);
if (free_num == -1) printf("No\n");
else if (free_num == -2) printf("No\n");
else if (free_num > 0)
{
printf("Yes\n");
}
else
printf("Yes\n");
}
return 0;
}