第七章的代码:DuelingDQN.ipynb及其涉及的其他代码的更新以及注解(gym版本 >= 0.26)
摘要
本系列知识点讲解基于蘑菇书EasyRL中的内容进行详细的疑难点分析!具体内容请阅读蘑菇书EasyRL!
# 1、定义算法
# 1.1、定义模型
import torch.nn as nn
import torch.nn.functional as F
class DuelingNet(nn.Module):
def __init__(self, n_states, n_actions,hidden_dim=128):
super(DuelingNet, self).__init__()
# hidden layer
self.hidden_layer = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU()
)
# advantage
self.advantage_layer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions)
)
# value
self.value_layer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, state):
x = self.hidden_layer(state)
advantage = self.advantage_layer(x)
value = self.value_layer(x)
'''Q(s,a)=V(s)+(A(s,a)−mean(A(s,a)))'''
return value + advantage - advantage.mean()
# 1.2、定义经验回放
"""
经验回放首先是具有一定容量的,只有存储一定的transition网络才会更新,否则就退回到了之前的逐步更新了。
另外写经验回放的时候一般需要包涵两个功能或方法,
一个是push,即将一个transition样本按顺序放到经验回放中,如果满了就把最开始放进去的样本挤掉,
因此如果大家学过数据结构的话推荐用队列来写,虽然这里不是。
另外一个是sample,很简单就是随机采样出一个或者若干个(具体多少就是batch_size了)样本供DQN网络更新。
功能讲清楚了,大家可以按照自己的想法用代码来实现,参考如下。
"""
from collections import deque
import random
class ReplayBuffer(object):
def __init__(self, capacity: int) -> None:
self.capacity = capacity
self.buffer = deque(maxlen=self.capacity)
def push(self,transitions):
''' 存储transition到经验回放中
'''
self.buffer.append(transitions)
def sample(self, batch_size: int, sequential: bool = False):
if batch_size > len(self.buffer): # 如果批量大小大于经验回放的容量,则取经验回放的容量
batch_size = len(self.buffer)
if sequential: # 顺序采样
rand = random.randint(0, len(self.buffer) - batch_size)
batch = [self.buffer[i] for i in range(rand, rand + batch_size)]
return zip(*batch)
else: # 随机采样
batch = random.sample(self.buffer, batch_size)
return zip(*batch)
def clear(self):
''' 清空经验回放
'''
self.buffer.clear()
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
# 1.3、真定义算法
import torch
import torch.optim as optim
import math
import numpy as np
class DuelingDQN:
def __init__(self,model,memory,cfg):
self.n_actions = cfg.n_actions
self.device = torch.device(cfg.device)
self.gamma = cfg.gamma # 折扣因子
# e-greedy策略相关参数
self.sample_count = 0 # 用于epsilon的衰减计数
self.epsilon = cfg.epsilon_start
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.target_update = cfg.target_update
self.policy_net = model.to(self.device)
self.target_net = model.to(self.device)
# 复制参数到目标网络
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
target_param.data.copy_(param.data)
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
self.memory = memory # 经验回放
self.update_flag = False
def sample_action(self, state):
''' 采样动作
'''
self.sample_count += 1
# epsilon指数衰减
'''根据公式更新 ε 值,实现指数衰减。'''
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
if random.random() > self.epsilon:
with torch.no_grad():
if isinstance(state, tuple):
state = state[0]
else:
state = state
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
else:
action = random.randrange(self.n_actions)
return action
@torch.no_grad() # 不计算梯度,该装饰器效果等同于with torch.no_grad():
def predict_action(self, state):
''' 预测动作
'''
if isinstance(state, tuple):
state = state[0]
else:
state = state
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
return action
def update(self):
if len(self.memory) < self.batch_size: # 当经验回放中不满足一个批量时,不更新策略
return
else:
if not self.update_flag:
print("开始更新策略!")
self.update_flag = True
# 从经验回放中随机采样一个批量的转移(transition)
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
# 将数据转换为tensor
processed_state_batch = []
for s in state_batch:
if isinstance(s, tuple):
# 如果元素是元组,则取元组的第一个元素
processed_state_batch.append(s[0])
else:
processed_state_batch.append(s)
state_batch = torch.tensor(np.array(processed_state_batch), device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1)
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1)
'''
# 实际的Q值
作用:
- 将状态批量 state_batch 传入策略网络,得到所有状态的 Q 值输出,形状为 (batch_size, n_actions);
- 然后用 gather(dim=1, index=action_batch) 从每行中选取智能体实际采取动作对应的 Q 值。
'''
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch)
'''
# 计算目标Q值
作用:
- 将下一状态批量传入目标网络,得到每个样本下所有动作的 Q 值;
- .max(1)[0] 从每行提取出最大的 Q 值,代表该状态下最优的 Q 值;
- .detach() 表示不对该值计算梯度;
- .unsqueeze(1) 将结果形状转换为 (batch_size, 1)。
举例:
- 假设对于一个样本,目标网络输出 [0.3, 0.4, 0.2],
那么 max(1)[0] 得到 0.4;整个批次得到一个形状 (64, 1) 的张量。
那么 max(1)[1] 得到 1;整个批次得到一个形状 (64, 1) 的张量。
'''
'''next_target_q_value_batch'''
next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1) # 最大的Q值
'''
根据贝尔曼方程计算目标 Q 值:
yi=ri+γmaxQtarget(a′)(s′i,a′)×(1−di)
'''
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch) # 期望的Q值
# 计算损失
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch)
# 优化更新模型
self.optimizer.zero_grad()
loss.backward()
# clip防止梯度爆炸
for param in self.policy_net.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
if self.sample_count % self.target_update == 0: # 每隔一段时间,将策略网络的参数复制到目标网络
self.target_net.load_state_dict(self.policy_net.state_dict())
# 2、定义训练
def train(cfg, env, agent):
''' 训练
'''
print("开始训练!")
rewards = [] # 记录所有回合的奖励
steps = []
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
ep_step = 0
state = env.reset() # 重置环境,返回初始状态
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.sample_action(state) # 选择动作
next_state, reward, done, truncated, info = env.step(action)
# next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
agent.memory.push((state, action, reward,next_state, done)) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
if (i_ep + 1) % 10 == 0:
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f},Epislon:{agent.epsilon:.3f}")
print("完成训练!")
env.close()
return {'rewards':rewards}
def test(cfg, env, agent):
print("开始测试!")
rewards = [] # 记录所有回合的奖励
steps = []
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
for _ in range(cfg.max_steps):
action = agent.predict_action(state) # 选择动作
next_state, reward, done, truncated, info = env.step(action)
# next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}")
print("完成测试")
env.close()
return {'rewards':rewards}
# 3. 定义环境
import gym
import os
def all_seed(env,seed = 1):
''' 万能的seed函数
'''
if not hasattr(env, 'seed'):
def seed_fn(self, seed=None):
env.reset(seed=seed)
return [seed]
env.seed = seed_fn.__get__(env, type(env))
# env.seed(seed) # env config
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed) # config for CPU
torch.cuda.manual_seed(seed) # config for GPU
os.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts
# config for cudnn
torch.backends.cudnn.deterministic = True # 保证使用确定性算法;
torch.backends.cudnn.benchmark = False # 关闭 CuDNN 的自动优化搜索;
torch.backends.cudnn.enabled = False # 禁用 CuDNN,从而确保每次计算结果一致。
def env_agent_config(cfg):
env = gym.make(cfg.env_name) # 创建环境
all_seed(env,seed=cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
print(f"状态空间维度:{n_states},动作空间维度:{n_actions}")
# 更新n_states和n_actions到cfg参数中
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
model = DuelingNet(n_states, n_actions, hidden_dim = cfg.hidden_dim) # 创建模型
memory = ReplayBuffer(cfg.memory_capacity) # 创建经验池
agent = DuelingDQN(model,memory,cfg)
return env,agent
# 4、设置参数
import argparse
import matplotlib.pyplot as plt
import seaborn as sns
class Config:
def __init__(self):
self.algo_name = 'DuelingDQN' # 算法名称
self.env_name = 'CartPole-v1' # 环境名称
self.seed = 1 # 随机种子
self.train_eps = 100 # 训练回合数
self.test_eps = 10 # 测试回合数
self.max_steps = 200 # 每回合最大步数
self.gamma = 0.95 # 折扣因子
self.lr = 0.0001 # 学习率
self.epsilon_start = 0.95 # epsilon初始值
self.epsilon_end = 0.01 # epsilon最终值
self.epsilon_decay = 500 # epsilon衰减率
self.memory_capacity = 10000 # ReplayBuffer容量
self.batch_size = 64 # ReplayBuffer中批次大小
self.target_update = 800 # 目标网络更新频率
self.hidden_dim = 256 # 神经网络隐藏层维度
if torch.cuda.is_available(): # 是否使用GPUs
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
def smooth(data, weight=0.9):
'''用于平滑曲线,类似于Tensorboard中的smooth曲线
'''
last = data[0]
smoothed = []
for point in data:
smoothed_val = last * weight + (1 - weight) * point # 计算平滑值
smoothed.append(smoothed_val)
last = smoothed_val
return smoothed
def plot_rewards(rewards,title="learning curve"):
sns.set()
plt.figure() # 创建一个图形实例,方便同时多画几个图
plt.title(f"{title}")
plt.xlim(0, len(rewards)) # 设置x轴的范围
plt.xticks(np.arange(0, len(rewards), 10))
plt.xlabel('epsiodes')
plt.plot(rewards, label='rewards')
plt.plot(smooth(rewards), label='smoothed')
plt.legend()
plt.show()
# 5、开始训练
# 获取参数
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
plot_rewards(res_dic['rewards'], title=f"training curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}")
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], title=f"testing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_name}") # 画出结果