有点像词向量预训练模型,这个框架可以作为很多视觉相关的任务的预训练模型,可以在少量标注样本的情况下,拿到比较好的结果。
结果
该研究一次就把无监督学习(学习后再用于分类等后续任务)的指标提升了 7-10%,甚至可以媲美有监督学习的效果。在这篇论文中,研究者发现[4]:
- 多个数据增强方法组合对于对比预测任务产生有效表示非常重要。此外,与有监督学习相比,数据增强对于无监督学习更加有用;
- 在表示和对比损失之间引入一个可学习的非线性变换(MLP)可以大幅提高模型学到的表示的质量;
- 与监督学习相比,对比学习得益于更大的批量和更多的训练步骤。
基于这些发现,他们在 ImageNet ILSVRC-2012 数据集上实现了一种新的半监督、自监督学习 SOTA 方法——SimCLR。在线性评估方面,SimCLR 实现了 76.5% 的 top-1 准确率,比之前的 SOTA 提升了 7%。在仅使用 1% 的 ImageNet 标签进行微调时,SimCLR 实现了 85.8% 的 top-5 准确率,比之前的 SOTA 方法提升了 10%。在 12 个其他自然图像分类数据集上进行微调时,SimCLR 在 10 个数据集上表现出了与强监督学习基线相当或更好的性能。
自监督情况下
固定特征提取层, 使用所有数据训练softmax分类器
小数据集fineturn
所有参数微调
迁移学习
所有数据
The Illustrated SimCLR Framework
Published March 04, 2020 in illustration
https://amitness.com/2020/03/illustrated-simclr/
近年来,众多的自我监督学习方法被提出用于学习图像表示,每一种方法都比前一种更好。但是,他们的表现仍然低于有监督的方法。当Chen等人在他们的研究论文“SimCLR:A Simple Framework for Contrastive Learning of Visual Representations”中提出一个新的框架时,这种情况改变了。SimCLR论文不仅改进了现有的自监督学习方法,而且在ImageNet分类上也超越了监督学习方法。在这篇文章中,我将用图解的