单应性变换后匹配

为了得到更多的匹配,可采用随机采样一致性(RANSAC)方法来进行异常过滤。若希望所使用图像是刚性的,只需要在模式图像和查询图像间找到单应性变换即可。
图像校正—透视变换

RANSAC算法原理与源码解析
以下代码使用了比率测试来删除离群值。使用单应细化来找到更多的匹配。

#include<opencv2/opencv.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/xfeatures2d/nonfree.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<iostream>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;

bool refineMatchesWithHomography(const vector<KeyPoint>&query,
    const vector<KeyPoint>&train,
    float reprojectionThreashold,
    vector<DMatch>&matches,
    Mat& homography)
{
    const int minNumMatchesAllowed = 8;
    if (matches.size() < minNumMatchesAllowed)
        return false;
    vector<Point2f>srcPoints(matches.size());
    vector<Point2f>dstPoints(matches.size());

    for (int i = 0; i < matches.size(); i++)
    {
        srcPoints[i] = train[matches[i].trainIdx].pt;
        dstPoints[i] = query[matches[i].queryIdx].pt;
    }

    vector<unsigned char>inlierMask(srcPoints.size());
    homography = findHomography(srcPoints,dstPoints,CV_FM_RANSAC,reprojectionThreashold,inlierMask);

    vector<DMatch> inliers;
    for (int i = 0; i < inlierMask.size(); i++)
    {
        if (inlierMask[i])
        {
            inliers.push_back(matches[i]);
        }
    }
    matches.swap(inliers);
    return matches.size() > minNumMatchesAllowed;
}



int main()
{
    Mat srcImage1, srcImage2;
    srcImage1 = imread("2.jpg",1);
    srcImage2 = imread("1.jpg",1);

    if (!srcImage1.data || !srcImage2.data)
    {
        cout << "读取数据出错" << endl;
        return false;
    }
    imshow("原图1",srcImage1);
    imshow("原图2",srcImage2);
    Mat srcImage1_gray, srcImage2_gray;
    cvtColor(srcImage1,srcImage2_gray,CV_BGR2GRAY);
    cvtColor(srcImage2,srcImage2_gray,CV_BGR2GRAY);


    Ptr<SurfFeatureDetector> detector = SurfFeatureDetector::create(400);
    vector<KeyPoint>keypoints1, keypoints2;
    Mat dstImage1, dstImage2;
    detector->detectAndCompute(srcImage1, Mat(), keypoints1, dstImage1);
    detector->detectAndCompute(srcImage2, Mat(), keypoints2, dstImage2);

    FlannBasedMatcher matcher;
    vector<Mat>train_desc_collection(1,dstImage2);
    matcher.add(train_desc_collection);
    matcher.train();

    vector<vector<DMatch>>knn_matches;
    vector<DMatch>matches;
    const float minRatio = 1.f / 1.5f;

    matcher.knnMatch(dstImage1,knn_matches,2);
    for (int i = 0; i < knn_matches.size(); i++)
    {
        const DMatch& bestmatch = knn_matches[i][0];
        const DMatch& bettermatch = knn_matches[i][1];

        float distanceRatio = bestmatch.distance / bettermatch.distance;

        if (distanceRatio < minRatio)
            matches.push_back(bestmatch);
    }

    Mat paterrn;
    drawMatches(srcImage1,keypoints1,srcImage2,keypoints2,matches,paterrn);
    imshow("无变换匹配",paterrn);

    Mat homography;
    bool homographyFound = refineMatchesWithHomography(keypoints1,keypoints2,3,matches,homography);

    Mat warpedImage;
    if (homographyFound)
    {
        warpPerspective(srcImage1, warpedImage, homography,Size(srcImage1.rows,srcImage1.cols),cv::WARP_INVERSE_MAP|cv::INTER_CUBIC);

        imshow("投射变换后的图片", warpedImage);

    }

    vector<KeyPoint>warpedkeypoints;
    Mat warpeddst;
    detector->detectAndCompute(warpedImage,Mat(),warpedkeypoints,warpeddst);
    vector<vector<DMatch>>knn_matches1;
    vector<DMatch>matches1;

    matcher.knnMatch(warpeddst, knn_matches1, 2);
    for (int i = 0; i < knn_matches1.size(); i++)
    {
        const DMatch& bestmatch1 = knn_matches1[i][0];
        const DMatch& bettermatch1 = knn_matches1[i][1];

        float distanceRatio1 = bestmatch1.distance / bettermatch1.distance;

        if (distanceRatio1 < minRatio)
            matches1.push_back(bestmatch1);
    }

    Mat result;
    drawMatches(warpedImage,warpedkeypoints,srcImage2,keypoints2,matches1,result);
    imshow("结果",result);
    waitKey(0);
    return 0;

}

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值