算法 - 最长公共子序列

本文介绍了算法导论中的最长公共子序列问题,提供了一种动态规划的解题思路,并给出了具体的代码实现。通过示例输入和输出展示了算法的运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法导论第三次上机B题

问题描述

我们称序列Z = < z 1, z 2, …, z k >是序列X = < x 1, x 2, …, x m >的子序列当且仅当存在 严格上升 的序列< i 1, i 2, …, i k >,使得对j = 1, 2, … ,k, 有x ij = z j。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。

现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。

输入

输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。

输出

对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。

样例输入

abcfbc abfcab
programming contest
abcd mnp

样例输出

4
2
0

解题思路

动态规划法
Alt

code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值