62. Unique Paths
题目链接:62. Unique Paths
思路链接:代码随想录动态规划-不同路径
思路
动态规划:
时间复杂度:O(mn)
空间复杂度:O(mn)
- 确定dp数组:走到第i行,第j列时有dp[i][j]种走法
- 初始化dp数组
- 递归表达式:dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
- 遍历顺序:按行来从左到右一行一行遍历
- 打印dp数组
深度优先搜索:
时间复杂度:O(2^(m + n - 1) - 1)
排列组合法:
时间复杂度:O(m)
空间复杂度:O(1)
要防止两个int相乘溢出!
Code
class Solution {
public int uniquePaths(int m, int n) {
// 确定dp数组:走到第i行,第j列时有dp[i][j]种走法
int[][] dp = new int[m][n];
// 初始化dp数组
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
dp[0][j] = 1;
}
// 递归表达式:dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
// 遍历顺序:按行来从左到右一行一行遍历
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
}
}
// 打印dp数组
// for (int i = 0; i < m; i++) {
// for (int j = 0; j < n; j++) {
// System.out.print(dp[i][j] + " ");
// }
// System.out.println("");
// }
return dp[m - 1][n - 1];
}
}
class Solution {
private int dfs(int m, int n, int i, int j) {
if (i > m || j > n) return 0; // 越界
if (i == m && j == n) return 1; // 找到一种方法
return dfs(m, n, i + 1, j) + dfs(m, n, i, j + 1);
}
public int uniquePaths(int m, int n) {
// dfs写法
return dfs(m, n, 1, 1);
}
}
class Solution {
public int uniquePaths(int m, int n) {
// 排列组合写法
// choose m - 1 from m + n - 2 elements
long numerator = 1; // 分子
long denominator = m - 1; // 分母
long count = m - 1;
long t = m + n - 2;
while (count != 0) {
numerator *= t;
t--;
while (denominator != 0 && numerator % denominator == 0) {
numerator /= denominator;
denominator--;
}
count--;
}
return Math.toIntExact(numerator);
}
}
63. Unique Paths II
题目链接:63. Unique Paths II
思路链接:代码随想录动态规划-不同路径 II
思路
- 确定dp数组:走到第i行,第j列时有dp[i][j]种走法
- 递推表达式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
- 初始化数组 (这里的初始化处理很重要):如果遇到障碍物,那么障碍物之后不同更新为1,因为走不到
- 遍历顺序:一行一行来从左到右;注意要讨论遇到障碍物的情况
- 打印dp数组
Code
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid[obstacleGrid.length - 1][obstacleGrid[0].length - 1] == 1) {
return 0;
}
if (obstacleGrid[0][0] == 1) {
return 0;
}
// 确定dp数组:走到第i行,第j列时有dp[i][j]种走法
int[][] dp = new int[obstacleGrid.length][obstacleGrid[0].length];
// 递推表达式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
// 初始化数组 (这里的初始化处理很重要)
for (int i = 0; i < obstacleGrid.length && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < obstacleGrid[0].length && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
// 遍历顺序:一行一行来从左到右
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
if (obstacleGrid[i][j] == 1) {
continue;
}
if (obstacleGrid[i - 1][j] == 1) {
dp[i][j] = dp[i][j - 1];
} else if (obstacleGrid[i][j - 1] == 1) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
// 打印dp数组
// for (int i = 0; i < dp.length; i++) {
// for (int j = 0; j < dp[0].length; j++) {
// System.out.print(dp[i][j] + " ");
// }
// System.out.println("");
// }
return dp[dp.length - 1][dp[0].length - 1];
}
}