#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <io.h>
#include<direct.h>
#include <iostream>
#include<windows.h>
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
using namespace cv;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
//double t = (double)getTickCount();
net_->ForwardPrefilled();
//getTickFrequency() * 1000;
//std::cout << "时间" << t << "ms" << std::endl;
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, CV_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, CV_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
//定义批处理文件的读取函数
int EnumFiles(string strDir, vector<string>&vec)
{
WIN32_FIND_DATA FindFileData;
HANDLE hFind;
string strDirTmp;
string strFileName;
string strsubstring;
int iFileCnt = 0;
strDirTmp = strDir + "\\*.*";
hFind = FindFirstFile(strDirTmp.c_str(), &FindFileData);
if (hFind == INVALID_HANDLE_VALUE)
{
return 0;
}
else
{
do
{
strFileName = string(FindFileData.cFileName);
if (strFileName.length()>4)
{
strsubstring = strFileName.substr(strFileName.length() - 4, 4);
string strTmp(".bmp");
string strTmp2(".jpg");
string strTmp3(".JPG");
string strTmp4("jpeg");
if (!strcmp(strsubstring.c_str(), strTmp.c_str()) || !strcmp(strsubstring.c_str(), strTmp2.c_str())
|| !strcmp(strsubstring.c_str(), strTmp3.c_str()) || !strcmp(strsubstring.c_str(), strTmp4.c_str()))
{
vec.push_back(strDir + "\\" + strFileName);
//vec.push_back(strFileName);
iFileCnt++;
}
else
{
}
}
} while (FindNextFile(hFind, &FindFileData) != 0);
}
// 查找结束
FindClose(hFind);
//返回容器包含测试集的个数
return iFileCnt;
}
//主函数
int main(int argc, char** argv) {
/*if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
}*/
//caffe::GlobalInit(&argc, &argv);
///****************效果最好**********************/
//string model_file = "E:\\egg\\train-data\\data\\egg9\\train-val\\16-32-64-xavier\\deploy.prototxt";// argv[1];
//string trained_file = "E:\\egg\\train-data\\data\\egg9\\train-val\\16-32-64-xavier\\测试集\\16-32-64_iter_200000.caffemodel";// argv[2];
//string mean_file = "E:\\egg\\train-data\\data\\egg9\\ming_mean.binaryproto";//argv[3];
//string label_file = "E:\\egg\\train-data\\1.txt";//argv[4];
///**************************************/
//string model_file = "E:\\egg\\deploy.prototxt";// argv[1];
//string trained_file = "E:\\egg\\hui_iter_600.caffemodel";// argv[2];
//string mean_file = "E:\\egg\\ming_mean.binaryproto";//argv[3];
//string label_file = "E:\\egg\\1.txt";//argv[4];
//string model_file = "E:\\egg\\train-new\\data\\egg\\train-val\\deploy.prototxt";// argv[1];
//string trained_file = "E:\\egg\\train-new\\egg2_iter_500000.caffemodel";// argv[2];
//string mean_file = "E:\\egg\\train-new\\data\\egg\\ming_mean.binaryproto";//argv[3];
//string label_file = "E:\\egg\\train-data\\1.txt";//argv[4];
///****************************train-org副本*********************************************/
//string model_file = "D:\\XuYunyun\\XuNet\\mydeploy.prototxt";// argv[1];
//string trained_file = "D:\\XuYunyun\\XuNet\\alextmodel_iter_8000.caffemodel";// argv[2];
//string mean_file = "D:\\XuYunyun\\mymeanfile\\mean.binaryproto";//argv[3];
//string label_file = "D:\\XuYunyun\\label.txt";//argv[4];
/****************************train-org副本*********************************************/
string model_file = "L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\2nd-2019-1-10\\deploy.prototxt";// argv[1];
string trained_file = "L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\1st-2018-12-17\\model\\bvlc_googlenet_iter_104000.caffemodel";// argv[2];
string mean_file = "L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\2nd-2019-1-10\\ming_mean.binaryproto";//argv[3];
string label_file = "L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\2nd-2019-1-10\\1.txt";//argv[4];
//string model_file = "E:\\caffe-windows\\data\\egg_center\\train-val\\deploy.prototxt";// argv[1];
//string trained_file = "E:\\caffe-windows\\data\\egg_center\\egg_se_iter_5000.caffemodel";// argv[2];
//string mean_file = "E:\\caffe-windows\\data\\egg_center\\mean.binaryproto";//argv[3];
//string label_file = "E:\\caffe-windows\\data\\egg_center\\1.txt";//argv[4];
/**************************************/
/****************************train-org*********************************************/
//string model_file = "E:\\egg\\train-org\\data\\egg\\train-val\\deploy.prototxt";// argv[1];
//string trained_file = "E:\\egg\\train-org\\egg-xavier_iter_200000.caffemodel";// argv[2];
//string mean_file = "E:\\egg\\train-org\\data\\egg\\ming_mean.binaryproto";//argv[3];
//string label_file = "E:\\egg\\train-data\\1.txt";//argv[4];
/**************************************/
/****************************train-new*********************************************/
//string model_file = "E:\\egg\\train-new\\data\\egg\\train-val\\deploy1.prototxt";// argv[1];
//string trained_file = "E:\\egg\\train-new\\egg-xavier-xin_iter_10000.caffemodel";// argv[2];
//string mean_file = "E:\\egg\\train-new\\data\\egg\\ming_mean.binaryproto";//argv[3];
//string label_file = "E:\\egg\\train-data\\1.txt";//argv[4];
/**************************************/
Classifier classifier(model_file, trained_file, mean_file, label_file);
//string file = "E:\\Liuhuasng\\模型文件\\pz\\1\\bad\\10150.jpg";//argv[5];
//std::cout << "---------- Prediction for "
// << file << " ----------" << std::endl;
FILE *file_;
/* file_ = fopen("E:\\egg\\train-new\\data\\egg\\train\\bad.txt", "wt");*/
file_ = fopen("L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\2nd-2019-1-10\\train\\1\\dirname.txt", "wt");
vector<string> vec;
/*EnumFiles(string("E:\\egg\\train-new\\data\\egg\\train\\bad"), vec);*/
//EnumFiles(string("E:\\pz\\1\\bad"), vec);
EnumFiles(string("L:\\ZenglaiGao\\EggImages\\googlenet_dataset\\2nd-2019-1-10\\train\\1"), vec);
int isize = vec.size();
for (int ifileCnt = 0; ifileCnt < vec.size(); ifileCnt++)
{
cv::Mat img = cv::imread(vec[ifileCnt].c_str(), -1);
//Mat dst;
//CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
//std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
// << p.first << "\"" << std::endl;
}
Prediction p = predictions[0];
std::cout << p.first << std::endl;
if (p.first != "1")
{
int npos = vec[ifileCnt].find_last_of("\\");
string s(vec[ifileCnt].substr(npos - 4));
fprintf(file_, "%s %f %s\r\n", p.first.c_str(), p.second, s.c_str());
}
}
fclose(file_);
//FILE *file_1;
///* file_ = fopen("E:\\egg\\train-new\\data\\egg\\train\\bad.txt", "wt");*/
//file_1 = fopen("E:\\caffe-windows\\data\\egg_center_64\\val\\good.txt", "wt");
//vector<string> vec1;
//char buf1[200];
////int flag1;
///*EnumFiles(string("E:\\egg\\train-new\\data\\egg\\train\\bad"), vec);*/
//EnumFiles(string("E:\\caffe-windows\\data\\egg_center_64\\val\\good"), vec1);
//for (int ifileCnt = 0; ifileCnt < vec1.size(); ifileCnt++)
//{
// cv::Mat img = cv::imread(vec1[ifileCnt].c_str(), -1);
// //Mat dst;
// // CHECK(!img.empty()) << "Unable to decode image " << file;
// std::vector<Prediction> predictions = classifier.Classify(img);
// /* Print the top N predictions. */
// for (size_t i = 0; i < predictions.size(); ++i) {
// Prediction p = predictions[i];
// //std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
// // << p.first << "\"" << std::endl;
// }
// Prediction p = predictions[0];
// std::cout << p.first << " " << p.second << std::endl;
// if (p.first != "good")
// {
// //flag1++;
// int npos = vec[ifileCnt].find_last_of("\\");
// string s(vec[ifileCnt].substr(npos - 4));
// sprintf(buf1, "E:\\caffe-windows\\data\\egg_center_64\\val\\error\\%s_%f_%d.bmp", p.first.c_str(), p.second, flag1);
// imwrite(buf1, img);
// fprintf(file_1, "%s %f %s\r\n", p.first.c_str(), p.second, s.c_str());
// }
//}
//fclose(file_1);
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV