Backbone 1.0.0 版 API _ Backbone.Events 解析

本文详细介绍了Backbone.js中的事件系统,包括如何绑定、触发和解除事件绑定,以及一些高级用法如一次性绑定和跨对象事件监听。还列举了Backbone内置事件,并解释了如何阻止事件触发。

Events is a module that can be mixed in to any object, giving the object the ability to bind and trigger custom named events. Events do not have to be declared before they are bound, and may take passed arguments. For example

var object = {};
_.extend(object, Backbone.Events);
object.on("alert", function(msg) {
  alert("Triggered " + msg);
});
object.trigger("alert", "an event");

Backbone.Events是一个能够被任何对象继承的模块,如果一个对象继承Events后,将拥有Events的一些能力,即能绑定和触发自定义事件。使用Events不需要声明,只需要传入相应的参数即可。
For example, to make a handy event dispatcher that can coordinate events among different areas of your application:  var dispatcher = _.clone(Backbone.Events)
可以很简单的创建一个事件适配器,能够整合你的程序中不同地方用到的事件。

onobject.on(event, callback, [context])Alias: bind 
Bind a callback function to an object. The callback will be invoked whenever the eventis fired. If you have a large number of different events on a page, the convention is to use colons to namespace them: "poll:start", or "change:selection". The event string may also be a space-delimited list of several events...

 

on是Backbone.Events的一个方法,通过extend继承后的对象就可以调用on方法,bind是on的别名:

Js代码 
  1. book.on === book.bind;  //true  

 on支持多个自定义事件同时绑定,用空格分割。

 

book.on("change:title change:author", ...);

To supply a context value for this when the callback is invoked, pass the optional third argument: model.on('change', this.render, this)

 

绑定的事件被激活后,可以通过第三个参数,传递上下文。

 

Callbacks bound to the special "all" event will be triggered when any event occurs, and are passed the name of the event as the first argument. For example, to proxy all events from one object to another:

 

有一个特殊的事件,即 all,任何事件的触发都会触发all绑定的事件,同时会将事件名作为第一个参数传递给all绑定的事件。

 

proxy.on("all", function(eventName) {
  object.trigger(eventName);
});

All Backbone event methods also support an event map syntax, as an alternative to positional arguments:

Backbone.Events的所有方法都支持事件map映射,如下更容易使用:

 

book.on({
  "change:title": titleView.update,
  "change:author": authorPane.update,
  "destroy": bookView.remove
});

offobject.off([event], [callback], [context])Alias: unbind 
Remove a previously-bound callback function from an object. If no context is specified, all of the versions of the callback with different contexts will be removed. If no callback is specified, all callbacks for the event will be removed. If no event is specified, callbacks for all events will be removed.

 

off移除绑定事件,别名unbind,最多有三个参数,都是可选项。如果没有参数的话,就是移除所有事件的所有callback,如果有一个参数就是event的所有callback;如果有两个参数就是移除event的callback;如果有三个参数,就是移除context身上绑定的event对应的callback方法。

event和callback可能为null,表示不指定具体某一个event或callback,而是移除所有event或者callback.

 

// Removes just the `onChange` callback.
object.off("change", onChange);

// Removes all "change" callbacks.
object.off("change");

// Removes the `onChange` callback for all events.
object.off(null, onChange);

// Removes all callbacks for `context` for all events.
object.off(null, null, context);

// Removes all callbacks on `object`.
object.off();

Note that calling model.off(), for example, will indeed remove all events on the model — including events that Backbone uses for internal bookkeeping.

  trigger object.trigger(event, [*args]) 

Trigger callbacks for the given event, or space-delimited list of events. Subsequent arguments to trigger will be passed along to the event callbacks.

 

触发事件,支持map映射

Js代码 
  1. var object = {};  
  2. _.extend(object, Backbone.Events);  
  3. object.on("all"function (eventname) {  
  4.         alert(eventname);  
  5.     });  
  6. object.on({  
  7.         "test" : function (msg) {  
  8.             alert(msg);  
  9.         },  
  10.         "hello" : function (msg) {  
  11.             alert(msg);  
  12.         }  
  13.     });  
  14. object.trigger({  
  15.         "test" : "hello",  
  16.         "hello" : "hello world"  
  17.     });  

 

onceobject.once(event, callback, [context]) 
Just like on, but causes the bound callback to only fire once before being removed. Handy for saying "the next time that X happens, do this".

 

once就是on事件的一个简单的封装,即自定义事件触发一次后就移除callback。

 

listenToobject.listenTo(other, event, callback) 
Tell an object to listen to a particular event on an other object. The advantage of using this form, instead of other.on(event, callback), is that listenTo allows the object to keep track of the events, and they can be removed all at once later on.

 

让一个对象监听另外一个对象发生的特殊事件,在表单应用中有优势。

 

view.listenTo(model, 'change', view.render);

stopListeningobject.stopListening([other], [event], [callback]) 
Tell an object to stop listening to events. Either call stopListening with no arguments to have the object remove all of its registered callbacks ... or be more precise by telling it to remove just the events it's listening to on a specific object, or a specific event, or just a specific callback.

相对于listenTo,停止监听。

 

view.stopListening();

view.stopListening(model);

listenToOnceobject.listenToOnce(other, event, callback) 
Just like listenTo, but causes the bound callback to only fire once before being removed.

只监听一次,一次后就stopListening

 

 

Catalog of Events 
Here's the complete list of built-in Backbone events, with arguments. You're also free to trigger your own events on Models, Collections and Views as you see fit. TheBackbone object itself mixes in Events, and can be used to emit any global events that your application needs.

下面的是Backbone.Events内置的一些儿事件,当然你也可以触发你绑定在Model上的自定义事件。

  • "add" (model, collection, options) — when a model is added to a collection.
  • "remove" (model, collection, options) — when a model is removed from a collection.
  • "reset" (collection, options) — when the collection's entire contents have been replaced.
  • "sort" (collection, options) — when the collection has been re-sorted.
  • "change" (model, options) — when a model's attributes have changed.
  • "change:[attribute]" (model, value, options) — when a specific attribute has been updated.
  • "destroy" (model, collection, options) — when a model is destroyed.
  • "request" (model, xhr, options) — when a model (or collection) has started a request to the server.
  • "sync" (model, resp, options) — when a model (or collection) has been successfully synced with the server.
  • "error" (model, xhr, options) — when a model's save call fails on the server.
  • "invalid" (model, error, options) — when a model's validation fails on the client.
  • "route:[name]" (params) — Fired by the router when a specific route is matched.
  • "route" (router, route, params) — Fired by history (or router) when any route has been matched.
  • "all" — this special event fires for any triggered event, passing the event name as the first argument.

Generally speaking, when calling a function that emits an event (model.set(),collection.add, and so on...), if you'd like to prevent the event from being triggered, you may pass {silent: true} as an option. Note that this is rarely, perhaps even never, a good idea. Passing through a specific flag in the options for your event callback to look at, and choose to ignore, will usually work out better.

整体来说,当触发一个事件的回调函数是,你也可以通过传递参数silent: true,来阻止回调函数的执行。


内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
Traceback (most recent call last): File "d:\代码\FCOS\FCOS-PyTorch\eval_voc.py", line 140, in <module> model.load_state_dict(torch.load("D:\代码\FCOS\FCOS-PyTorch\checkpoint\model_30.pth",map_location=torch.device('cpu'))) File "D:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 2593, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for DataParallel: Missing key(s) in state_dict: "module.fcos_body.backbone.conv1.weight", "module.fcos_body.backbone.bn1.weight", "module.fcos_body.backbone.bn1.bias", "module.fcos_body.backbone.bn1.running_mean", "module.fcos_body.backbone.bn1.running_var", "module.fcos_body.backbone.layer1.0.conv1.weight", "module.fcos_body.backbone.layer1.0.bn1.weight", "module.fcos_body.backbone.layer1.0.bn1.bias", "module.fcos_body.backbone.layer1.0.bn1.running_mean", "module.fcos_body.backbone.layer1.0.bn1.running_var", "module.fcos_body.backbone.layer1.0.conv2.weight", "module.fcos_body.backbone.layer1.0.bn2.weight", "module.fcos_body.backbone.layer1.0.bn2.bias", "module.fcos_body.backbone.layer1.0.bn2.running_mean", "module.fcos_body.backbone.layer1.0.bn2.running_var", "module.fcos_body.backbone.layer1.0.conv3.weight", "module.fcos_body.backbone.layer1.0.bn3.weight", "module.fcos_body.backbone.layer1.0.bn3.bias", "module.fcos_body.backbone.layer1.0.bn3.running_mean", "module.fcos_body.backbone.layer1.0.bn3.running_var", "module.fcos_body.backbone.layer1.0.downsample.0.weight", "module.fcos_body.backbone.layer1.0.downsample.1.weight", "module.fcos_body.backbone.layer1.0.downsample.1.bias", "module.fcos_body.backbone.layer1.0.downsample.1.running_mean", "module.fcos_body.backbone.layer1.0.downsample.1.running_var", "module.fcos_body.backbone.layer1.1.conv1.weight", "module.fcos_body.backbone.layer1.1.bn1.weight", "module.fcos_body.backbone.layer1.1.bn1.bias", "module.fcos_body.backbone.layer1.1.bn1.running_mean", "module.fcos_body.backbone.layer1.1.bn1.running_var", "module.fcos_body.backbone.layer1.1.conv2.weight", "module.fcos_body.backbone.layer1.1.bn2.weight", "module.fcos_body.backbone.layer1.1.bn2.bias", "module.fcos_body.backbone.layer1.1.bn2.running_mean", "module.fcos_body.backbone.layer1.1.bn2.running_var", "module.fcos_body.backbone.layer1.1.conv3.weight", "module.fcos_body.backbone.layer1.1.bn3.weight", "module.fcos_body.backbone.layer1.1.bn3.bias", "module.fcos_body.backbone.layer1.1.bn3.running_mean", "module.fcos_body.backbone.layer1.1.bn3.running_var", "module.fcos_body.backbone.layer1.2.conv1.weight", "module.fcos_body.backbone.layer1.2.bn1.weight", "module.fcos_body.backbone.layer1.2.bn1.bias", "module.fcos_body.backbone.layer1.2.bn1.running_mean", "module.fcos_body.backbone.layer1.2.bn1.running_var", "module.fcos_body.backbone.layer1.2.conv2.weight", "module.fcos_body.backbone.layer1.2.bn2.weight", "module.fcos_body.backbone.layer1.2.bn2.bias", "module.fcos_body.backbone.layer1.2.bn2.running_mean", "module.fcos_body.backbone.layer1.2.bn2.running_var", "module.fcos_body.backbone.layer1.2.conv3.weight", "module.fcos_body.backbone.layer1.2.bn3.weight", "module.fcos_body.backbone.layer1.2.bn3.bias", "module.fcos_body.backbone.layer1.2.bn3.running_mean", "module.fcos_body.backbone.layer1.2.bn3.running_var", "module.fcos_body.backbone.layer2.0.conv1.weight", "module.fcos_body.backbone.layer2.0.bn1.weight", "module.fcos_body.backbone.layer2.0.bn1.bias", "module.fcos_body.backbone.layer2.0.bn1.running_mean", "module.fcos_body.backbone.layer2.0.bn1.running_var", "module.fcos_body.backbone.layer2.0.conv2.weight", "module.fcos_body.backbone.layer2.0.bn2.weight", "module.fcos_body.backbone.layer2.0.bn2.bias", "module.fcos_body.backbone.layer2.0.bn2.running_mean", "module.fcos_body.backbone.layer2.0.bn2.running_var", "module.fcos_body.backbone.layer2.0.conv3.weight", "module.fcos_body.backbone.layer2.0.bn3.weight", "module.fcos_body.backbone.layer2.0.bn3.bias", "module.fcos_body.backbone.layer2.0.bn3.running_mean", "module.fcos_body.backbone.layer2.0.bn3.running_var", "module.fcos_body.backbone.layer2.0.downsample.0.weight", "module.fcos_body.backbone.layer2.0.downsample.1.weight", "module.fcos_body.backbone.layer2.0.downsample.1.bias", "module.fcos_body.backbone.layer2.0.downsample.1.running_mean", "module.fcos_body.backbone.layer2.0.downsample.1.running_var", "module.fcos_body.backbone.layer2.1.conv1.weight", "module.fcos_body.backbone.layer2.1.bn1.weight", "module.fcos_body.backbone.layer2.1.bn1.bias", "module.fcos_body.backbone.layer2.1.bn1.running_mean", "module.fcos_body.backbone.layer2.1.bn1.running_var", "module.fcos_body.backbone.layer2.1.conv2.weight", "module.fcos_body.backbone.layer2.1.bn2.weight", "module.fcos_body.backbone.layer2.1.bn2.bias", "module.fcos_body.backbone.layer2.1.bn2.running_mean", "module.fcos_body.backbone.layer2.1.bn2.running_var", "module.fcos_body.backbone.layer2.1.conv3.weight", "module.fcos_body.backbone.layer2.1.bn3.weight", "module.fcos_body.backbone.layer2.1.bn3.bias", "module.fcos_body.backbone.layer2.1.bn3.running_mean", "module.fcos_body.backbone.layer2.1.bn3.running_var", "module.fcos_body.backbone.layer2.2.conv1.weight", "module.fcos_body.backbone.layer2.2.bn1.weight", "module.fcos_body.backbone.layer2.2.bn1.bias", "module.fcos_body.backbone.layer2.2.bn1.running_mean", "module.fcos_body.backbone.layer2.2.bn1.running_var", "module.fcos_body.backbone.layer2.2.conv2.weight", "module.fcos_body.backbone.layer2.2.bn2.weight", "module.fcos_body.backbone.layer2.2.bn2.bias", "module.fcos_body.backbone.layer2.2.bn2.running_mean", "module.fcos_body.backbone.layer2.2.bn2.running_var", "module.fcos_body.backbone.layer2.2.conv3.weight", "module.fcos_body.backbone.layer2.2.bn3.weight", "module.fcos_body.backbone.layer2.2.bn3.bias", "module.fcos_body.backbone.layer2.2.bn3.running_mean", "module.fcos_body.backbone.layer2.2.bn3.running_var", "module.fcos_body.backbone.layer2.3.conv1.weight", "module.fcos_body.backbone.layer2.3.bn1.weight", "module.fcos_body.backbone.layer2.3.bn1.bias", "module.fcos_body.backbone.layer2.3.bn1.running_mean", "module.fcos_body.backbone.layer2.3.bn1.running_var", "module.fcos_body.backbone.layer2.3.conv2.weight", "module.fcos_body.backbone.layer2.3.bn2.weight", "module.fcos_body.backbone.layer2.3.bn2.bias", "module.fcos_body.backbone.layer2.3.bn2.running_mean", "module.fcos_body.backbone.layer2.3.bn2.running_var", "module.fcos_body.backbone.layer2.3.conv3.weight", "module.fcos_body.backbone.layer2.3.bn3.weight", "module.fcos_body.backbone.layer2.3.bn3.bias", "module.fcos_body.backbone.layer2.3.bn3.running_mean", "module.fcos_body.backbone.layer2.3.bn3.running_var", "module.fcos_body.backbone.layer3.0.conv1.weight", "module.fcos_body.backbone.layer3.0.bn1.weight", "module.fcos_body.backbone.layer3.0.bn1.bias", "module.fcos_body.backbone.layer3.0.bn1.running_mean", "module.fcos_body.backbone.layer3.0.bn1.running_var", "module.fcos_body.backbone.layer3.0.conv2.weight", "module.fcos_body.backbone.layer3.0.bn2.weight", "module.fcos_body.backbone.layer3.0.bn2.bias", "module.fcos_body.backbone.layer3.0.bn2.running_mean", "module.fcos_body.backbone.layer3.0.bn2.running_var", "module.fcos_body.backbone.layer3.0.conv3.weight", "module.fcos_body.backbone.layer3.0.bn3.weight", "module.fcos_body.backbone.layer3.0.bn3.bias", "module.fcos_body.backbone.layer3.0.bn3.running_mean", "module.fcos_body.backbone.layer3.0.bn3.running_var", "module.fcos_body.backbone.layer3.0.downsample.0.weight", "module.fcos_body.backbone.layer3.0.downsample.1.weight", "module.fcos_body.backbone.layer3.0.downsample.1.bias", "module.fcos_body.backbone.layer3.0.downsample.1.running_mean", "module.fcos_body.backbone.layer3.0.downsample.1.running_var", "module.fcos_body.backbone.layer3.1.conv1.weight", "module.fcos_body.backbone.layer3.1.bn1.weight", "module.fcos_body.backbone.layer3.1.bn1.bias", "module.fcos_body.backbone.layer3.1.bn1.running_mean", "module.fcos_body.backbone.layer3.1.bn1.running_var", "module.fcos_body.backbone.layer3.1.conv2.weight", "module.fcos_body.backbone.layer3.1.bn2.weight", "module.fcos_body.backbone.layer3.1.bn2.bias", "module.fcos_body.backbone.layer3.1.bn2.running_mean", "module.fcos_body.backbone.layer3.1.bn2.running_var", "module.fcos_body.backbone.layer3.1.conv3.weight", "module.fcos_body.backbone.layer3.1.bn3.weight", "module.fcos_body.backbone.layer3.1.bn3.bias", "module.fcos_body.backbone.layer3.1.bn3.running_mean", "module.fcos_body.backbone.layer3.1.bn3.running_var", "module.fcos_body.backbone.layer3.2.conv1.weight", "module.fcos_body.backbone.layer3.2.bn1.weight", "module.fcos_body.backbone.layer3.2.bn1.bias", "module.fcos_body.backbone.layer3.2.bn1.running_mean", "module.fcos_body.backbone.layer3.2.bn1.running_var", "module.fcos_body.backbone.layer3.2.conv2.weight", "module.fcos_body.backbone.layer3.2.bn2.weight", "module.fcos_body.backbone.layer3.2.bn2.bias", "module.fcos_body.backbone.layer3.2.bn2.running_mean", "module.fcos_body.backbone.layer3.2.bn2.running_var", "module.fcos_body.backbone.layer3.2.conv3.weight", "module.fcos_body.backbone.layer3.2.bn3.weight", "module.fcos_body.backbone.layer3.2.bn3.bias", "module.fcos_body.backbone.layer3.2.bn3.running_mean", "module.fcos_body.backbone.layer3.2.bn3.running_var", "module.fcos_body.backbone.layer3.3.conv1.weight", "module.fcos_body.backbone.layer3.3.bn1.weight", "module.fcos_body.backbone.layer3.3.bn1.bias", "module.fcos_body.backbone.layer3.3.bn1.running_mean", "module.fcos_body.backbone.layer3.3.bn1.running_var", "module.fcos_body.backbone.layer3.3.conv2.weight", "module.fcos_body.backbone.layer3.3.bn2.weight", "module.fcos_body.backbone.layer3.3.bn2.bias", "module.fcos_body.backbone.layer3.3.bn2.running_mean", "module.fcos_body.backbone.layer3.3.bn2.running_var", "module.fcos_body.backbone.layer3.3.conv3.weight", "module.fcos_body.backbone.layer3.3.bn3.weight", "module.fcos_body.backbone.layer3.3.bn3.bias", "module.fcos_body.backbone.layer3.3.bn3.running_mean", "module.fcos_body.backbone.layer3.3.bn3.running_var", "module.fcos_body.backbone.layer3.4.conv1.weight", "module.fcos_body.backbone.layer3.4.bn1.weight", "module.fcos_body.backbone.layer3.4.bn1.bias", "module.fcos_body.backbone.layer3.4.bn1.running_mean", "module.fcos_body.backbone.layer3.4.bn1.running_var", "module.fcos_body.backbone.layer3.4.conv2.weight", "module.fcos_body.backbone.layer3.4.bn2.weight", "module.fcos_body.backbone.layer3.4.bn2.bias", "module.fcos_body.backbone.layer3.4.bn2.running_mean", "module.fcos_body.backbone.layer3.4.bn2.running_var", "module.fcos_body.backbone.layer3.4.conv3.weight", "module.fcos_body.backbone.layer3.4.bn3.weight", "module.fcos_body.backbone.layer3.4.bn3.bias", "module.fcos_body.backbone.layer3.4.bn3.running_mean", "module.fcos_body.backbone.layer3.4.bn3.running_var", "module.fcos_body.backbone.layer3.5.conv1.weight", "module.fcos_body.backbone.layer3.5.bn1.weight", "module.fcos_body.backbone.layer3.5.bn1.bias", "module.fcos_body.backbone.layer3.5.bn1.running_mean", "module.fcos_body.backbone.layer3.5.bn1.running_var", "module.fcos_body.backbone.layer3.5.conv2.weight", "module.fcos_body.backbone.layer3.5.bn2.weight", "module.fcos_body.backbone.layer3.5.bn2.bias", "module.fcos_body.backbone.layer3.5.bn2.running_mean", "module.fcos_body.backbone.layer3.5.bn2.running_var", "module.fcos_body.backbone.layer3.5.conv3.weight", "module.fcos_body.backbone.layer3.5.bn3.weight", "module.fcos_body.backbone.layer3.5.bn3.bias", "module.fcos_body.backbone.layer3.5.bn3.running_mean", "module.fcos_body.backbone.layer3.5.bn3.running_var", "module.fcos_body.backbone.layer4.0.conv1.weight", "module.fcos_body.backbone.layer4.0.bn1.weight", "module.fcos_body.backbone.layer4.0.bn1.bias", "module.fcos_body.backbone.layer4.0.bn1.running_mean", "module.fcos_body.backbone.layer4.0.bn1.running_var", "module.fcos_body.backbone.layer4.0.conv2.weight", "module.fcos_body.backbone.layer4.0.bn2.weight", "module.fcos_body.backbone.layer4.0.bn2.bias", "module.fcos_body.backbone.layer4.0.bn2.running_mean", "module.fcos_body.backbone.layer4.0.bn2.running_var", "module.fcos_body.backbone.layer4.0.conv3.weight", "module.fcos_body.backbone.layer4.0.bn3.weight", "module.fcos_body.backbone.layer4.0.bn3.bias", "module.fcos_body.backbone.layer4.0.bn3.running_mean", "module.fcos_body.backbone.layer4.0.bn3.running_var", "module.fcos_body.backbone.layer4.0.downsample.0.weight", "module.fcos_body.backbone.layer4.0.downsample.1.weight", "module.fcos_body.backbone.layer4.0.downsample.1.bias", "module.fcos_body.backbone.layer4.0.downsample.1.running_mean", "module.fcos_body.backbone.layer4.0.downsample.1.running_var", "module.fcos_body.backbone.layer4.1.conv1.weight", "module.fcos_body.backbone.layer4.1.bn1.weight", "module.fcos_body.backbone.layer4.1.bn1.bias", "module.fcos_body.backbone.layer4.1.bn1.running_mean", "module.fcos_body.backbone.layer4.1.bn1.running_var", "module.fcos_body.backbone.layer4.1.conv2.weight", "module.fcos_body.backbone.layer4.1.bn2.weight", "module.fcos_body.backbone.layer4.1.bn2.bias", "module.fcos_body.backbone.layer4.1.bn2.running_mean", "module.fcos_body.backbone.layer4.1.bn2.running_var", "module.fcos_body.backbone.layer4.1.conv3.weight", "module.fcos_body.backbone.layer4.1.bn3.weight", "module.fcos_body.backbone.layer4.1.bn3.bias", "module.fcos_body.backbone.layer4.1.bn3.running_mean", "module.fcos_body.backbone.layer4.1.bn3.running_var", "module.fcos_body.backbone.layer4.2.conv1.weight", "module.fcos_body.backbone.layer4.2.bn1.weight", "module.fcos_body.backbone.layer4.2.bn1.bias", "module.fcos_body.backbone.layer4.2.bn1.running_mean", "module.fcos_body.backbone.layer4.2.bn1.running_var", "module.fcos_body.backbone.layer4.2.conv2.weight", "module.fcos_body.backbone.layer4.2.bn2.weight", "module.fcos_body.backbone.layer4.2.bn2.bias", "module.fcos_body.backbone.layer4.2.bn2.running_mean", "module.fcos_body.backbone.layer4.2.bn2.running_var", "module.fcos_body.backbone.layer4.2.conv3.weight", "module.fcos_body.backbone.layer4.2.bn3.weight", "module.fcos_body.backbone.layer4.2.bn3.bias", "module.fcos_body.backbone.layer4.2.bn3.running_mean", "module.fcos_body.backbone.layer4.2.bn3.running_var", "module.fcos_body.fpn.prj_5.weight", "module.fcos_body.fpn.prj_5.bias", "module.fcos_body.fpn.prj_4.weight", "module.fcos_body.fpn.prj_4.bias", "module.fcos_body.fpn.prj_3.weight", "module.fcos_body.fpn.prj_3.bias", "module.fcos_body.fpn.conv_5.weight", "module.fcos_body.fpn.conv_5.bias", "module.fcos_body.fpn.conv_4.weight", "module.fcos_body.fpn.conv_4.bias", "module.fcos_body.fpn.conv_3.weight", "module.fcos_body.fpn.conv_3.bias", "module.fcos_body.fpn.conv_out6.weight", "module.fcos_body.fpn.conv_out6.bias", "module.fcos_body.fpn.conv_out7.weight", "module.fcos_body.fpn.conv_out7.bias", "module.fcos_body.head.cls_conv.0.weight", "module.fcos_body.head.cls_conv.0.bias", "module.fcos_body.head.cls_conv.1.weight", "module.fcos_body.head.cls_conv.1.bias", "module.fcos_body.head.cls_conv.3.weight", "module.fcos_body.head.cls_conv.3.bias", "module.fcos_body.head.cls_conv.4.weight", "module.fcos_body.head.cls_conv.4.bias", "module.fcos_body.head.cls_conv.6.weight", "module.fcos_body.head.cls_conv.6.bias", "module.fcos_body.head.cls_conv.7.weight", "module.fcos_body.head.cls_conv.7.bias", "module.fcos_body.head.cls_conv.9.weight", "module.fcos_body.head.cls_conv.9.bias", "module.fcos_body.head.cls_conv.10.weight", "module.fcos_body.head.cls_conv.10.bias", "module.fcos_body.head.reg_conv.0.weight", "module.fcos_body.head.reg_conv.0.bias", "module.fcos_body.head.reg_conv.1.weight", "module.fcos_body.head.reg_conv.1.bias", "module.fcos_body.head.reg_conv.3.weight", "module.fcos_body.head.reg_conv.3.bias", "module.fcos_body.head.reg_conv.4.weight", "module.fcos_body.head.reg_conv.4.bias", "module.fcos_body.head.reg_conv.6.weight", "module.fcos_body.head.reg_conv.6.bias", "module.fcos_body.head.reg_conv.7.weight", "module.fcos_body.head.reg_conv.7.bias", "module.fcos_body.head.reg_conv.9.weight", "module.fcos_body.head.reg_conv.9.bias", "module.fcos_body.head.reg_conv.10.weight", "module.fcos_body.head.reg_conv.10.bias", "module.fcos_body.head.cls_logits.weight", "module.fcos_body.head.cls_logits.bias", "module.fcos_body.head.cnt_logits.weight", "module.fcos_body.head.cnt_logits.bias", "module.fcos_body.head.reg_pred.weight", "module.fcos_body.head.reg_pred.bias", "module.fcos_body.head.scale_exp.0.scale", "module.fcos_body.head.scale_exp.1.scale", "module.fcos_body.head.scale_exp.2.scale", "module.fcos_body.head.scale_exp.3.scale", "module.fcos_body.head.scale_exp.4.scale". Unexpected key(s) in state_dict: "fcos_body.backbone.conv1.weight", "fcos_body.backbone.bn1.weight", "fcos_body.backbone.bn1.bias", "fcos_body.backbone.bn1.running_mean", "fcos_body.backbone.bn1.running_var", "fcos_body.backbone.bn1.num_batches_tracked", "fcos_body.backbone.layer1.0.conv1.weight", "fcos_body.backbone.layer1.0.bn1.weight", "fcos_body.backbone.layer1.0.bn1.bias", "fcos_body.backbone.layer1.0.bn1.running_mean", "fcos_body.backbone.layer1.0.bn1.running_var", "fcos_body.backbone.layer1.0.bn1.num_batches_tracked", "fcos_body.backbone.layer1.0.conv2.weight", "fcos_body.backbone.layer1.0.bn2.weight", "fcos_body.backbone.layer1.0.bn2.bias", "fcos_body.backbone.layer1.0.bn2.running_mean", "fcos_body.backbone.layer1.0.bn2.running_var", "fcos_body.backbone.layer1.0.bn2.num_batches_tracked", "fcos_body.backbone.layer1.0.conv3.weight", "fcos_body.backbone.layer1.0.bn3.weight", "fcos_body.backbone.layer1.0.bn3.bias", "fcos_body.backbone.layer1.0.bn3.running_mean", "fcos_body.backbone.layer1.0.bn3.running_var", "fcos_body.backbone.layer1.0.bn3.num_batches_tracked", "fcos_body.backbone.layer1.0.downsample.0.weight", "fcos_body.backbone.layer1.0.downsample.1.weight", "fcos_body.backbone.layer1.0.downsample.1.bias", "fcos_body.backbone.layer1.0.downsample.1.running_mean", "fcos_body.backbone.layer1.0.downsample.1.running_var", "fcos_body.backbone.layer1.0.downsample.1.num_batches_tracked", "fcos_body.backbone.layer1.1.conv1.weight", "fcos_body.backbone.layer1.1.bn1.weight", "fcos_body.backbone.layer1.1.bn1.bias", "fcos_body.backbone.layer1.1.bn1.running_mean", "fcos_body.backbone.layer1.1.bn1.running_var", "fcos_body.backbone.layer1.1.bn1.num_batches_tracked", "fcos_body.backbone.layer1.1.conv2.weight", "fcos_body.backbone.layer1.1.bn2.weight", "fcos_body.backbone.layer1.1.bn2.bias", "fcos_body.backbone.layer1.1.bn2.running_mean", "fcos_body.backbone.layer1.1.bn2.running_var", "fcos_body.backbone.layer1.1.bn2.num_batches_tracked", "fcos_body.backbone.layer1.1.conv3.weight", "fcos_body.backbone.layer1.1.bn3.weight", "fcos_body.backbone.layer1.1.bn3.bias", "fcos_body.backbone.layer1.1.bn3.running_mean", "fcos_body.backbone.layer1.1.bn3.running_var", "fcos_body.backbone.layer1.1.bn3.num_batches_tracked", "fcos_body.backbone.layer1.2.conv1.weight", "fcos_body.backbone.layer1.2.bn1.weight", "fcos_body.backbone.layer1.2.bn1.bias", "fcos_body.backbone.layer1.2.bn1.running_mean", "fcos_body.backbone.layer1.2.bn1.running_var", "fcos_body.backbone.layer1.2.bn1.num_batches_tracked", "fcos_body.backbone.layer1.2.conv2.weight", "fcos_body.backbone.layer1.2.bn2.weight", "fcos_body.backbone.layer1.2.bn2.bias", "fcos_body.backbone.layer1.2.bn2.running_mean", "fcos_body.backbone.layer1.2.bn2.running_var", "fcos_body.backbone.layer1.2.bn2.num_batches_tracked", "fcos_body.backbone.layer1.2.conv3.weight", "fcos_body.backbone.layer1.2.bn3.weight", "fcos_body.backbone.layer1.2.bn3.bias", "fcos_body.backbone.layer1.2.bn3.running_mean", "fcos_body.backbone.layer1.2.bn3.running_var", "fcos_body.backbone.layer1.2.bn3.num_batches_tracked", "fcos_body.backbone.layer2.0.conv1.weight", "fcos_body.backbone.layer2.0.bn1.weight", "fcos_body.backbone.layer2.0.bn1.bias", "fcos_body.backbone.layer2.0.bn1.running_mean", "fcos_body.backbone.layer2.0.bn1.running_var", "fcos_body.backbone.layer2.0.bn1.num_batches_tracked", "fcos_body.backbone.layer2.0.conv2.weight", "fcos_body.backbone.layer2.0.bn2.weight", "fcos_body.backbone.layer2.0.bn2.bias", "fcos_body.backbone.layer2.0.bn2.running_mean", "fcos_body.backbone.layer2.0.bn2.running_var", "fcos_body.backbone.layer2.0.bn2.num_batches_tracked", "fcos_body.backbone.layer2.0.conv3.weight", "fcos_body.backbone.layer2.0.bn3.weight", "fcos_body.backbone.layer2.0.bn3.bias", "fcos_body.backbone.layer2.0.bn3.running_mean", "fcos_body.backbone.layer2.0.bn3.running_var", "fcos_body.backbone.layer2.0.bn3.num_batches_tracked", "fcos_body.backbone.layer2.0.downsample.0.weight", "fcos_body.backbone.layer2.0.downsample.1.weight", "fcos_body.backbone.layer2.0.downsample.1.bias", "fcos_body.backbone.layer2.0.downsample.1.running_mean", "fcos_body.backbone.layer2.0.downsample.1.running_var", "fcos_body.backbone.layer2.0.downsample.1.num_batches_tracked", "fcos_body.backbone.layer2.1.conv1.weight", "fcos_body.backbone.layer2.1.bn1.weight", "fcos_body.backbone.layer2.1.bn1.bias", "fcos_body.backbone.layer2.1.bn1.running_mean", "fcos_body.backbone.layer2.1.bn1.running_var", "fcos_body.backbone.layer2.1.bn1.num_batches_tracked", "fcos_body.backbone.layer2.1.conv2.weight", "fcos_body.backbone.layer2.1.bn2.weight", "fcos_body.backbone.layer2.1.bn2.bias", "fcos_body.backbone.layer2.1.bn2.running_mean", "fcos_body.backbone.layer2.1.bn2.running_var", "fcos_body.backbone.layer2.1.bn2.num_batches_tracked", "fcos_body.backbone.layer2.1.conv3.weight", "fcos_body.backbone.layer2.1.bn3.weight", "fcos_body.backbone.layer2.1.bn3.bias", "fcos_body.backbone.layer2.1.bn3.running_mean", "fcos_body.backbone.layer2.1.bn3.running_var", "fcos_body.backbone.layer2.1.bn3.num_batches_tracked", "fcos_body.backbone.layer2.2.conv1.weight", "fcos_body.backbone.layer2.2.bn1.weight", "fcos_body.backbone.layer2.2.bn1.bias", "fcos_body.backbone.layer2.2.bn1.running_mean", "fcos_body.backbone.layer2.2.bn1.running_var", "fcos_body.backbone.layer2.2.bn1.num_batches_tracked", "fcos_body.backbone.layer2.2.conv2.weight", "fcos_body.backbone.layer2.2.bn2.weight", "fcos_body.backbone.layer2.2.bn2.bias", "fcos_body.backbone.layer2.2.bn2.running_mean", "fcos_body.backbone.layer2.2.bn2.running_var", "fcos_body.backbone.layer2.2.bn2.num_batches_tracked", "fcos_body.backbone.layer2.2.conv3.weight", "fcos_body.backbone.layer2.2.bn3.weight", "fcos_body.backbone.layer2.2.bn3.bias", "fcos_body.backbone.layer2.2.bn3.running_mean", "fcos_body.backbone.layer2.2.bn3.running_var", "fcos_body.backbone.layer2.2.bn3.num_batches_tracked", "fcos_body.backbone.layer2.3.conv1.weight", "fcos_body.backbone.layer2.3.bn1.weight", "fcos_body.backbone.layer2.3.bn1.bias", "fcos_body.backbone.layer2.3.bn1.running_mean", "fcos_body.backbone.layer2.3.bn1.running_var", "fcos_body.backbone.layer2.3.bn1.num_batches_tracked", "fcos_body.backbone.layer2.3.conv2.weight", "fcos_body.backbone.layer2.3.bn2.weight", "fcos_body.backbone.layer2.3.bn2.bias", "fcos_body.backbone.layer2.3.bn2.running_mean", "fcos_body.backbone.layer2.3.bn2.running_var", "fcos_body.backbone.layer2.3.bn2.num_batches_tracked", "fcos_body.backbone.layer2.3.conv3.weight", "fcos_body.backbone.layer2.3.bn3.weight", "fcos_body.backbone.layer2.3.bn3.bias", "fcos_body.backbone.layer2.3.bn3.running_mean", "fcos_body.backbone.layer2.3.bn3.running_var", "fcos_body.backbone.layer2.3.bn3.num_batches_tracked", "fcos_body.backbone.layer3.0.conv1.weight", "fcos_body.backbone.layer3.0.bn1.weight", "fcos_body.backbone.layer3.0.bn1.bias", "fcos_body.backbone.layer3.0.bn1.running_mean", "fcos_body.backbone.layer3.0.bn1.running_var", "fcos_body.backbone.layer3.0.bn1.num_batches_tracked", "fcos_body.backbone.layer3.0.conv2.weight", "fcos_body.backbone.layer3.0.bn2.weight", "fcos_body.backbone.layer3.0.bn2.bias", "fcos_body.backbone.layer3.0.bn2.running_mean", "fcos_body.backbone.layer3.0.bn2.running_var", "fcos_body.backbone.layer3.0.bn2.num_batches_tracked", "fcos_body.backbone.layer3.0.conv3.weight", "fcos_body.backbone.layer3.0.bn3.weight", "fcos_body.backbone.layer3.0.bn3.bias", "fcos_body.backbone.layer3.0.bn3.running_mean", "fcos_body.backbone.layer3.0.bn3.running_var", "fcos_body.backbone.layer3.0.bn3.num_batches_tracked", "fcos_body.backbone.layer3.0.downsample.0.weight", "fcos_body.backbone.layer3.0.downsample.1.weight", "fcos_body.backbone.layer3.0.downsample.1.bias", "fcos_body.backbone.layer3.0.downsample.1.running_mean", "fcos_body.backbone.layer3.0.downsample.1.running_var", "fcos_body.backbone.layer3.0.downsample.1.num_batches_tracked", "fcos_body.backbone.layer3.1.conv1.weight", "fcos_body.backbone.layer3.1.bn1.weight", "fcos_body.backbone.layer3.1.bn1.bias", "fcos_body.backbone.layer3.1.bn1.running_mean", "fcos_body.backbone.layer3.1.bn1.running_var", "fcos_body.backbone.layer3.1.bn1.num_batches_tracked", "fcos_body.backbone.layer3.1.conv2.weight", "fcos_body.backbone.layer3.1.bn2.weight", "fcos_body.backbone.layer3.1.bn2.bias", "fcos_body.backbone.layer3.1.bn2.running_mean", "fcos_body.backbone.layer3.1.bn2.running_var", "fcos_body.backbone.layer3.1.bn2.num_batches_tracked", "fcos_body.backbone.layer3.1.conv3.weight", "fcos_body.backbone.layer3.1.bn3.weight", "fcos_body.backbone.layer3.1.bn3.bias", "fcos_body.backbone.layer3.1.bn3.running_mean", "fcos_body.backbone.layer3.1.bn3.running_var", "fcos_body.backbone.layer3.1.bn3.num_batches_tracked", "fcos_body.backbone.layer3.2.conv1.weight", "fcos_body.backbone.layer3.2.bn1.weight", "fcos_body.backbone.layer3.2.bn1.bias", "fcos_body.backbone.layer3.2.bn1.running_mean", "fcos_body.backbone.layer3.2.bn1.running_var", "fcos_body.backbone.layer3.2.bn1.num_batches_tracked", "fcos_body.backbone.layer3.2.conv2.weight", "fcos_body.backbone.layer3.2.bn2.weight", "fcos_body.backbone.layer3.2.bn2.bias", "fcos_body.backbone.layer3.2.bn2.running_mean", "fcos_body.backbone.layer3.2.bn2.running_var", "fcos_body.backbone.layer3.2.bn2.num_batches_tracked", "fcos_body.backbone.layer3.2.conv3.weight", "fcos_body.backbone.layer3.2.bn3.weight", "fcos_body.backbone.layer3.2.bn3.bias", "fcos_body.backbone.layer3.2.bn3.running_mean", "fcos_body.backbone.layer3.2.bn3.running_var", "fcos_body.backbone.layer3.2.bn3.num_batches_tracked", "fcos_body.backbone.layer3.3.conv1.weight", "fcos_body.backbone.layer3.3.bn1.weight", "fcos_body.backbone.layer3.3.bn1.bias", "fcos_body.backbone.layer3.3.bn1.running_mean", "fcos_body.backbone.layer3.3.bn1.running_var", "fcos_body.backbone.layer3.3.bn1.num_batches_tracked", "fcos_body.backbone.layer3.3.conv2.weight", "fcos_body.backbone.layer3.3.bn2.weight", "fcos_body.backbone.layer3.3.bn2.bias", "fcos_body.backbone.layer3.3.bn2.running_mean", "fcos_body.backbone.layer3.3.bn2.running_var", "fcos_body.backbone.layer3.3.bn2.num_batches_tracked", "fcos_body.backbone.layer3.3.conv3.weight", "fcos_body.backbone.layer3.3.bn3.weight", "fcos_body.backbone.layer3.3.bn3.bias", "fcos_body.backbone.layer3.3.bn3.running_mean", "fcos_body.backbone.layer3.3.bn3.running_var", "fcos_body.backbone.layer3.3.bn3.num_batches_tracked", "fcos_body.backbone.layer3.4.conv1.weight", "fcos_body.backbone.layer3.4.bn1.weight", "fcos_body.backbone.layer3.4.bn1.bias", "fcos_body.backbone.layer3.4.bn1.running_mean", "fcos_body.backbone.layer3.4.bn1.running_var", "fcos_body.backbone.layer3.4.bn1.num_batches_tracked", "fcos_body.backbone.layer3.4.conv2.weight", "fcos_body.backbone.layer3.4.bn2.weight", "fcos_body.backbone.layer3.4.bn2.bias", "fcos_body.backbone.layer3.4.bn2.running_mean", "fcos_body.backbone.layer3.4.bn2.running_var", "fcos_body.backbone.layer3.4.bn2.num_batches_tracked", "fcos_body.backbone.layer3.4.conv3.weight", "fcos_body.backbone.layer3.4.bn3.weight", "fcos_body.backbone.layer3.4.bn3.bias", "fcos_body.backbone.layer3.4.bn3.running_mean", "fcos_body.backbone.layer3.4.bn3.running_var", "fcos_body.backbone.layer3.4.bn3.num_batches_tracked", "fcos_body.backbone.layer3.5.conv1.weight", "fcos_body.backbone.layer3.5.bn1.weight", "fcos_body.backbone.layer3.5.bn1.bias", "fcos_body.backbone.layer3.5.bn1.running_mean", "fcos_body.backbone.layer3.5.bn1.running_var", "fcos_body.backbone.layer3.5.bn1.num_batches_tracked", "fcos_body.backbone.layer3.5.conv2.weight", "fcos_body.backbone.layer3.5.bn2.weight", "fcos_body.backbone.layer3.5.bn2.bias", "fcos_body.backbone.layer3.5.bn2.running_mean", "fcos_body.backbone.layer3.5.bn2.running_var", "fcos_body.backbone.layer3.5.bn2.num_batches_tracked", "fcos_body.backbone.layer3.5.conv3.weight", "fcos_body.backbone.layer3.5.bn3.weight", "fcos_body.backbone.layer3.5.bn3.bias", "fcos_body.backbone.layer3.5.bn3.running_mean", "fcos_body.backbone.layer3.5.bn3.running_var", "fcos_body.backbone.layer3.5.bn3.num_batches_tracked", "fcos_body.backbone.layer4.0.conv1.weight", "fcos_body.backbone.layer4.0.bn1.weight", "fcos_body.backbone.layer4.0.bn1.bias", "fcos_body.backbone.layer4.0.bn1.running_mean", "fcos_body.backbone.layer4.0.bn1.running_var", "fcos_body.backbone.layer4.0.bn1.num_batches_tracked", "fcos_body.backbone.layer4.0.conv2.weight", "fcos_body.backbone.layer4.0.bn2.weight", "fcos_body.backbone.layer4.0.bn2.bias", "fcos_body.backbone.layer4.0.bn2.running_mean", "fcos_body.backbone.layer4.0.bn2.running_var", "fcos_body.backbone.layer4.0.bn2.num_batches_tracked", "fcos_body.backbone.layer4.0.conv3.weight", "fcos_body.backbone.layer4.0.bn3.weight", "fcos_body.backbone.layer4.0.bn3.bias", "fcos_body.backbone.layer4.0.bn3.running_mean", "fcos_body.backbone.layer4.0.bn3.running_var", "fcos_body.backbone.layer4.0.bn3.num_batches_tracked", "fcos_body.backbone.layer4.0.downsample.0.weight", "fcos_body.backbone.layer4.0.downsample.1.weight", "fcos_body.backbone.layer4.0.downsample.1.bias", "fcos_body.backbone.layer4.0.downsample.1.running_mean", "fcos_body.backbone.layer4.0.downsample.1.running_var", "fcos_body.backbone.layer4.0.downsample.1.num_batches_tracked", "fcos_body.backbone.layer4.1.conv1.weight", "fcos_body.backbone.layer4.1.bn1.weigackbone.layer4.1.conv2.weight", "fcos_body.backbone.layer4.1.bn2.weight", "fcos_body.backbone.layer4.1.bn2.bias", "fcos_body.backbone.layer4.1.bn2.running_mean", "fcos_body.backbone.layer4.1.bn2.running_var", "fcos_body.backbone.layer4.1.bn2.num_batches_tracked", "fcos_body.backbone.layer4.1.conv3.weight", "fcos_body.backbone.layer4.1.bn3.weight", "fcos_body.backbone.layer4.1.bn3.bias", "fcos_body.backbone.layer4.1.bn3.running_mean", "fcos_body.backbone.layer4.1.bn3.running_var", "fcos_body.backbone.layer4.1.bn3.num_batches_tracked", "fcos_body.backbone.layer4.2.conv1.weight", "fcos_body.backbone.layer4.2.bn1.weight", "fcos_body.backbone.layer4.2.bn1.bias", "fcos_body.backbone.layer4.2.bn1.running_mean", "fcos_body.backbone.layer4.2.bn1.running_var", "fcos_body.backbone.layer4.2.bn1.num_batches_tracked", "fcos_body.backbone.layer4.2.conv2.weight", "fcos_body.backbone.layer4.2.bn2.weight", "fcos_body.backbone.layer4.2.bn2.bias", "fcos_body.backbone.layer4.2.bn2.running_mean", "fcos_body.backbone.layer4.2.bn2.running_var", "fcos_body.backbone.layer4.2.bn2.num_batches_tracked", "fcos_body.backbone.layer4.2.conv3.weight", "fcos_body.backbone.layer4.2.bn3.weight", "fcos_body.backbone.layer4.2.bn3.bias", "fcos_body.backbone.layer4.2.bn3.running_mean", "fcos_body.backbone.layer4.2.bn3.running_var", "fcos_body.backbone.layer4.2.bn3.num_batches_tracked", "fcos_body.fpn.prj_5.weight", "fcos_body.fpn.prj_5.bias", "fcos_body.fpn.prj_4.weight", "fcos_body.fpn.prj_4.bias", "fcos_body.fpn.prj_3.weight", "fcos_body.fpn.prj_3.bias", "fcos_body.fpn.conv_5.weight", "fcos_body.fpn.conv_5.bias", "fcos_body.fpn.conv_4.weight", "fcos_body.fpn.conv_4.bias", "fcos_body.fpn.conv_3.weight", "fcos_body.fpn.conv_3.bias", "fcos_body.fpn.conv_out6.weight", "fcos_body.fpn.conv_out6.bias", "fcos_body.fpn.conv_out7.weight", "fcos_body.fpn.conv_out7.bias", "fcos_body.head.cls_conv.0.weight", "fcos_body.head.cls_conv.0.bias", "fcos_body.head.cls_conv.1.weight", "fcos_body.head.cls_conv.1.bias", "fcos_body.head.cls_conv.3.weight", "fcos_body.head.cls_conv.3.bias", "fcos_body.head.cls_conv.4.weight", "fcos_body.head.cls_conv.4.bias", "fcos_body.head.cls_conv.6.weight", "fcos_body.head.cls_conv.6.bias", "fcos_body.head.cls_conv.7.weight", "fcos_body.head.cls_conv.7.bias", "fcos_body.head.cls_conv.9.weight", "fcos_body.head.cls_conv.9.bias", "fcos_body.head.cls_conv.10.weight", "fcos_body.head.cls_conv.10.bias", "fcos_body.head.reg_conv.0.weight", "fcos_body.head.reg_conv.0.bias", "fcos_body.head.reg_conv.1.weight", "fcos_body.head.reg_conv.1.bias", "fcos_body.head.reg_conv.3.weight", "fcos_body.head.reg_conv.3.bias", "fcos_body.head.reg_conv.4.weight", "fcos_body.head.reg_conv.4.bias", "fcos_body.head.reg_conv.6.weight", "fcos_body.head.reg_conv.6.bias", "fcos_body.head.reg_conv.7.weight", "fcos_body.head.reg_conv.7.bias", "fcos_body.head.reg_conv.9.weight", "fcos_body.head.reg_conv.9.bias", "fcos_body.head.reg_conv.10.weight", "fcos_body.head.reg_conv.10.bias", "fcos_body.head.cls_logits.weight", "fcos_body.head.cls_logits.bias", "fcos_body.head.cnt_logits.weight", "fcos_body.head.cnt_logits.bias", "fcos_body.head.reg_pred.weight", "fcos_body.head.reg_pred.bias", "fcos_body.head.scale_exp.0.scale", "fcos_body.head.scale_exp.1.scale", "fcos_body.head.scale_exp.2.scale", "fcos_body.head.scale_exp.3.scale", "fcos_body.head.scale_exp.4.scale".
12-12
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值