堆排序具有的优点:时间O(nlgn),具有空间原址性,按照书上的讲法,主要步骤分三步:
1.假定一个堆中一个节点,子树已经为最大堆但根不比左右子树大,构造一个算法将根放置合适位置,让子树加该节点满足最大堆的性质。MAX-HEAPIFY,复杂度O(lgn)
2.从堆的最后一个非叶节点开始,使用1的算法保证直到根节点整个堆满足最大堆的性质BUILD-MAX-HEAP,复杂度O(nlgn)
3.尽管满足最大堆性质:根比左右子树都大,但是不能满足是有序的。因此每次通过与最后一个叶节点交换将最大元素根取出来,剩下子树除了两个交换的节点都满足最大堆性质,这时忽略最后一个叶节点(最大值已经放到赌赢的位置)对根做最大堆调整。O(nlgn)
python实现如下:我写了两个,一个没有用到类只是简单的list,一个构造了堆类
def max_heapify(A, i, heap_size):
l = 2 * i
r = 2 * i + 1
if l <= heap_size and A[l-1] > A[i-1]:
largest = l
else:
largest = i
if r <= heap_size and A[r-1] > A[largest-1]:
largest = r
if largest == i:
return
else:
A[largest-1], A[i-1] = A[i-1], A[largest-1]
max_heapify(A, largest, heap_size)
def bulid_max_heap(A):
heap_size = len(A)
for i in range(int(len(A)/2), 0, -1):
max_heapify(A, i, heap_size)
def heapsort(A):
bulid_max_heap(A)
for i in range(len(A), 1, -1):
A[0], A[i-1] = A[i-1], A[0]
max_heapify(A, 1, i-1)
if __name__ == "__main__":
# list = [16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
# print list
# max_heapify(list, 2, len(list))
# print list
list = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]
print list
heapsort(list)
print list
2.含类
class Heap:
def __init__(self, list):
self.list = list
self.heap_size = len(list)
def left(self, i):
return 2 * i
def right(self, i):
return 2 * i + 1
def parent(self, i):
return int(i / 2)
def max_heapify(A, i, heap_size):
l = A.left(i)
r = A.right(i)
if l <= heap_size and A.list[l-1] > A.list[i-1]:
largest = l
else:
largest = i
if r <= heap_size and A.list[r-1] > A.list[largest-1]:
largest = r
if largest == i:
return
else:
A.list[largest-1], A.list[i-1] = A.list[i-1], A.list[largest-1]
max_heapify(A, largest, heap_size)
def bulid_max_heap(A):
for i in range(int(len(A.list)/2), 0, -1):
max_heapify(A, i, A.heap_size)
def heapsort(A):
bulid_max_heap(A)
for i in range(A.heap_size, 1, -1):
A.list[0], A.list[i-1] = A.list[i-1], A.list[0]
max_heapify(A, 1, i-1)
if __name__ == "__main__":
# list = [16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
# print list
# max_heapify(list, 2, len(list))
# print list
list = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]
list_class = Heap(list)
heapsort(list_class)
print list_class.list