转http://blog.youkuaiyun.com/xingyeyongheng/article/details/9855103
Decode the Strings
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 766 Accepted Submission(s): 232
Problem Description
Bruce Force has had an interesting idea how to encode strings. The following is the description of how the encoding is done:
Let x 1,x 2,...,x n be the sequence of characters of the string to be encoded.
1. Choose an integer m and n pairwise distinct numbers p 1,p 2,...,p n from the set {1, 2, ..., n} (a permutation of the numbers 1 to n).
2. Repeat the following step m times.
3. For 1 ≤ i ≤ n set y i to x pi, and then for 1 ≤ i ≤ n replace x i by y i.
For example, when we want to encode the string "hello", and we choose the value m = 3 and the permutation 2, 3, 1, 5, 4, the data would be encoded in 3 steps: "hello" -> "elhol" -> "lhelo" -> "helol".
Bruce gives you the encoded strings, and the numbers m and p 1, ..., p n used to encode these strings. He claims that because he used huge numbers m for encoding, you will need a lot of time to decode the strings. Can you disprove this claim by quickly decoding the strings?
Let x 1,x 2,...,x n be the sequence of characters of the string to be encoded.
1. Choose an integer m and n pairwise distinct numbers p 1,p 2,...,p n from the set {1, 2, ..., n} (a permutation of the numbers 1 to n).
2. Repeat the following step m times.
3. For 1 ≤ i ≤ n set y i to x pi, and then for 1 ≤ i ≤ n replace x i by y i.
For example, when we want to encode the string "hello", and we choose the value m = 3 and the permutation 2, 3, 1, 5, 4, the data would be encoded in 3 steps: "hello" -> "elhol" -> "lhelo" -> "helol".
Bruce gives you the encoded strings, and the numbers m and p 1, ..., p n used to encode these strings. He claims that because he used huge numbers m for encoding, you will need a lot of time to decode the strings. Can you disprove this claim by quickly decoding the strings?
Input
The input contains several test cases. Each test case starts with a line containing two numbers n and m (1 ≤ n ≤ 80, 1 ≤ m ≤ 10
9). The following line consists of n pairwise different numbers p
1,...,p
n (1 ≤ p
i ≤ n). The third line of each test case consists of exactly n characters, and represent the encoded string. The last test case is followed by a line containing two zeros.
Output
For each test case, print one line with the decoded string.
Sample Input
5 3 2 3 1 5 4 helol 16 804289384 13 10 2 7 8 1 16 12 15 6 5 14 3 4 11 9 scssoet tcaede n 8 12 5 3 4 2 1 8 6 7 encoded? 0 0
Sample Output
hello second test case encoded?
题目意思是给出n个字符的置换方式,经过m次转换后得到了最终字符串(就是给定的字符串),求最初的字符串分析:假定最初字符串序号是1,2,3,4,置换方式是3,1,2,4,即1,2,3,4置换一次后得到3,1,2,4构成的字符串将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
如果置换m次则将置换矩阵*m次即可,最后乘上给定的字符串矩阵得到最终字符串矩阵(就是得到的矩阵第i行第j列是1表示由s[j]得到第s[i]个字符)但是本题是给定结果,叫我们求最初的矩阵,其实就是将原来矩阵求逆矩阵的m次A*B^m=C =>A=C*B^(-m),A*A^-1=I;//I是单位矩阵注意到这里的矩阵A元素为0或1且每一行每一列只有一个1,则A中的A[i][k]*B[k][j]=I[i][j]=1,i == j,所以A的逆矩阵就是A逆s[i][j]=A的s[j][i]
#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100
const int MAXN = 100;
long long mod;
struct Matrix
{
int mat[MAXN][MAXN];
void Zero()
{
memset(mat, 0, sizeof(mat));
}
void Unit()
{
memset(mat, 0, sizeof(mat));
for (int i = 0; i < MAXN; i++)
mat[i][i] = 1;
}
void output()
{
int from = 1, to = 10;
for (int i = from - 1; i < to; i++)
{
printf("%d ", i);
}
printf("\n");
for (int i = from; i < to; i++)
{
printf("%d=", i);
for (int j = from; j < to; j++)
{
printf("%d ", mat[i][j]);
}
printf("\n");
}
}
};
Matrix operator*(Matrix &a, Matrix &b)
{
Matrix tmp;
tmp.Zero();
for (int k = 0; k < MAXN; k++)
{
for (int i = 0; i < MAXN; i++)
{
if (!a.mat[i][k])
continue;
for (int j = 0; j < MAXN; j++)
{
tmp.mat[i][j] += a.mat[i][k] * b.mat[k][j] % mod;
if ( tmp.mat[i][j] >= mod)
tmp.mat[i][j] -= mod;
}
}
}
return tmp;
}
Matrix operator ^(Matrix a, int k)
{
Matrix tmp;
tmp.Unit();
for (; k; k >>= 1)
{
if (k & 1)
tmp = tmp * a;
a = a * a;
}
return tmp;
}
int a[N];
char s[1000];
Matrix mt;
int main()
{
#ifdef DeBUGs
freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
int n, m;
mod = 2;
while (scanf("%d%d", &n, &m), n || m)
{
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
getchar();
gets(s + 1);
mt.Zero();
for (int i = 1; i <= n; i++)
{
mt.mat[a[i]][i] = 1;
}
mt = mt ^ m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (mt.mat[i][j])
{
printf("%c", s[j]);
break;
}
}
}
printf("\n");
// mt.output();
}
return 0;
}