数字在排序数组中出现的次数

本文介绍了一种利用二分查找和递归方法,在排序数组中查找特定数字首次及末次出现位置的方法,从而实现高效统计该数字出现次数的目的。时间复杂度为O(logn),适用于大数据量场景。

题目:统计一个数字在排序数组中出现的次数。

思路:总体思想是二分查找和递归。把统计数字K的出现次数转换为查找第一个K和最后一个K。时间复杂度为O(logn)。


 public int GetNumberOfK(int [] array , int k) {
       if(array == null || array.length <= 0){
    		return 0;
    	}
    	int length = array.length;
    	int FirstK = getFirstK(array,length,k,0,length-1);
    	int LastK = getLastK(array,length,k,0,length-1);
    	if(FirstK > -1 && LastK > -1){
    		return LastK-FirstK+1;    		
    	}
    	return 0;
    }
    
    private static int getFirstK(int[] nums,int length,int k,int start,int end){
    	if(start>end){
    		return -1;
    	}
    	int middleIndex = start + (end-start)/2;
    	int middleData = nums[middleIndex];
    	if(middleData == k){
    		if((middleIndex>0&&nums[middleIndex-1]!=k)||middleIndex==0){
    			return middleIndex;
    		}
    		else{
    			end = middleIndex -1;
    		}
    	}
    	else if(middleData > k){
    		end = middleIndex -1;
    	}
    	else{
    		start = middleIndex + 1;
    	}
    	
    	return getFirstK(nums,length,k,start,end);
    }
    
    private static int getLastK(int[] nums,int length,int k,int start,int end){
    	if(start>end){
    		return -1;
    	}
    	int middleIndex = start + (end-start)/2;
    	int middleData = nums[middleIndex];
    	if(middleData == k){
    		if((middleIndex<end&&nums[middleIndex+1]!=k)||middleIndex==end){
    			return middleIndex;
    		}
    		else{
    			start = middleIndex + 1;
    		}
    	}
    	else if(middleData>k){
			end = middleIndex - 1;
		}
		else{
			start = middleIndex + 1;
		}
    	return getLastK(nums,length,k,start,end);
    }


基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>好的,我现在需要帮助用户找到力扣上关于“数组中出现次数超过一半的数字”的相关题目。首先,根据用户提供的引用内容,特别是引用[1]到[5],可以看出用户主要关注的是剑指 Offer 39题,也就是多数元素问题。用户可能希望了解这道题的具体内容、解题思路以及相关方法。 首先,我需要确认用户提到的题目在力扣上的具体编号和名称。根据引用[1]、[2]、[3]、[4]和[5],都指向了同一道题:剑指 Offer 39. 数组中出现次数超过一半的数字。因此,我应该首先明确这道题的基本要求和示例。 接下来,用户可能需要了解不同的解题方法,比如哈希表统计法、排序法、摩尔投票法等。根据引用[3]和[4]提到的摩尔投票法,这种方法的时间复杂度是O(n),空间复杂度是O(1),是一个高效的解法。需要详细解释摩尔投票法的原理,比如票数正负抵消的机制,以及如何通过遍历数组找到众数。 然后,用户可能需要了解其他相关题目,比如力扣中的第169题“多数元素”,这与剑指Offer 39题类似,但可能有不同的输入条件或变种问题。此外,用户可能对类似的问题感兴趣,比如“求众数II”(第229题),需要找出出现次数超过n/3次的元素,这可以扩展用户的理解。 在整理回答时,需要确保符合用户给出的系统级指令,例如所有数学表达式用$...$格式,独立公式用$$...$$,并且正确使用中文。同时,生成相关问题时要考虑用户可能的后续疑问,比如不同解法的比较、时间空间复杂度分析、实际应用场景等。 需要验证引用的正确性,确保引用的内容与对应的题目一致。例如,引用[3]提到的推论二关于票数和的抵消机制,这确实是摩尔投票法的核心思想,需要正确引用。同时,代码示例需要符合用户提供的Python语法,并确保正确性。 最后,生成的相关问题需要覆盖用户可能感兴趣的方向,如其他相关题目、优化方法、实际应用等,确保问题具有引导性,帮助用户深入理解该算法题的不同方面。</think>### 数组中出现次数超过一半的数字(剑指 Offer 39) #### 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。假设数组非空且总存在多数元素。 示例: 输入:`[1,2,3,2,2,2,5,4,2]` 输出:`2`(出现5次,数组长度9) --- #### 核心思路 1. **摩尔投票法** 通过**票数正负抵消**的思想,假设众数(出现次数超半数的数)的票数为$+1$,非众数的票数为$-1$。由于众数数量占优,最终剩余的数字必为众数[^3][^4]。 **步骤**: - 初始化候选值`x`和票数`votes` - 遍历数组:若票数为0,更新候选值为当前元素;否则根据当前元素是否等于候选值增减票数 - 最终候选值即为众数 ```python def majorityElement(nums): votes, x = 0, None for num in nums: if votes == 0: x = num votes += 1 if num == x else -1 return x ``` 2. **其他解法** - **哈希统计法**:统计频率,时间复杂度$O(n)$,空间复杂度$O(n)$ - **排序法**:排序后取中间值,时间复杂度$O(n \log n)$,空间复杂度$O(1)$ --- #### 相关题目 1. **力扣169. 多数元素** 与本题完全相同,可用相同解法[^2][^5]。 2. **力扣229. 求众数II** 扩展问题:找出所有出现次数超过$\lfloor n/3 \rfloor$次的元素,需结合摩尔投票法改进[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值