DFT
IDFT
FFT
1 当输入向量长度为2^k时
参考《Introduction to Algorithms》chapter 30.3
每次迭代的元素赋值及辅助方法reorder
/// <summary>
/// Radix-2 Step Helper Method
/// </summary>
/// <param name="data">Sample vector.</param>
/// <param name="exponentSign">Fourier series exponent sign.</param>
/// <param name="levelSize">Level Group Size.</param>
/// <param name="k">Index inside of the level.</param>
private static void Radix2Step(Complex[] data, int exponentSign, int levelSize, int k)
{
// Twiddle Factor
var exponent = (exponentSign * k) * Math.PI / levelSize;
var w = new Complex(Math.Cos(exponent), Math.Sin(exponent));
var step = levelSize << 1;
for (var i = k; i < data.Length; i += step)
{
var ai = data[i];
var t = w * data[i + levelSize];
data[i] = ai + t;
data[i + levelSize] = ai - t;
}
}
/// <summary>
/// Radix-2 Reorder Helper Method
/// </summary>
private static void Radix2Reorder<T>(T[] data)
{
var j = 0;
for (var i = 0; i < data.Length - 1; i++)
{
if (i < j)
{
var temp = data[i];
data[i] = data[j];
data[j] = temp;
}
var m = data.Length;
do
{
m >>= 1;
j ^= m;
}
while ((j & m) == 0);
}
}
当exponentSign = -1时计算的是DFT, 1时计算的是IDFT
/// <summary>
/// Radix-2 generic FFT for power-of-two sized sample vectors.
/// </summary>
private static void Radix2Forward(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize <<= 1)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, -1, levelSize, k);
}
}
}
/// <summary>
/// Radix-2 generic FFT for power-of-two sized sample vectors.
/// </summary>
private static void Radix2Inverse(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize <<= 1)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, 1, levelSize, k);
}
}
}
2 当输入向量长度!=2^k时
计算exp(I*Pi*n^2/N)
/// <summary>
/// Sequences with length greater than Math.Sqrt(Int32.MaxValue) + 1
/// will cause k*k in the Bluestein sequence to overflow (GH-286).
/// </summary>
private static readonly int BluesteinSequenceLengthThreshold = 46341;
/// <summary>
/// Generate the bluestein sequence for the provided problem size.
/// </summary>
/// <returns>Bluestein sequence exp(I*Pi*k^2/N)</returns>
private static Complex[] BluesteinSequence(int n)
{
var s = Math.PI / n;
var sequence = new Complex[n];
// TODO: benchmark whether the second variation is significantly
// faster than the former one. If not just use the former one always.
if (n > BluesteinSequenceLengthThreshold)
{
for (var k = 0; k < sequence.Length; k++)
{
var t = (s * k) * k;
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
}
}
else
{
for (var k = 0; k < sequence.Length; k++)
{
var t = s * (k * k);
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
}
}
return sequence;
}
时域的卷积就是频域的乘积,所以卷积计算就是IDFT(DFT(a)*DFT(b))
/// <summary>
/// Convolution with the bluestein sequence.
/// </summary>
private static void BluesteinConvolution(Complex[] data)
{
var n = data.Length;
var sequence = BluesteinSequence(n);
// Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
var m = (int)CeilingPowerOf2(((uint)n << 1) - 1);
var b = new Complex[m];
var a = new Complex[m];
// Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
for (var i = 0; i < n; i++)
{
b[i] = sequence[i];
}
for (var i = m - n + 1; i < b.Length; i++)
{
b[i] = sequence[m - i];
}
Radix2Forward(b);
// Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
for (var i = 0; i < data.Length; i++)
{
a[i] = Complex.Conjugate(sequence[i]) * data[i];
}
Radix2Forward(a);
for (var i = 0; i < a.Length; i++)
{
a[i] *= b[i];
}
Radix2Inverse(a);
var nbinv = 1.0 / m;
for (var i = 0; i < data.Length; i++)
{
data[i] = nbinv * Complex.Conjugate(sequence[i]) * a[i];
}
}
/// <summary>
/// least power of 2 greater than or equal to <paramref name="n"/>
/// </summary>
public static uint CeilingPowerOf2(uint n)
{
--n;
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return n + 1;
}
IDFT先虚实交换再调用上述方法,最后再对结果虚实交换。
/// <summary>
/// Bluestein generic FFT for arbitrary sized sample vectors.
/// </summary>
private static void BluesteinForward(Complex[] data)
=> BluesteinConvolution(data);
/// <summary>
/// Bluestein generic FFT for arbitrary sized sample vectors.
/// </summary>
private static void BluesteinInverse(Complex[] data)
{
SwapRealImaginary(data);
BluesteinConvolution(data);
SwapRealImaginary(data);
}
/// <summary>
/// Swap the real and imaginary parts of each sample.
/// </summary>
private static void SwapRealImaginary(Complex[] data)
{
for (var i = 0; i < data.Length; i++)
{
data[i] = new Complex(data[i].Imaginary, data[i].Real);
}
}
结合上诉两种情况,得出最终DFT和IDFT代码
/// <summary>
/// Cooley–Tukey FFT algorithm,
/// </summary>
public static void DFT(Complex[] data)
{
var len = (uint)data.Length;
if (IsPowerOf2(len))
{
Radix2Forward(data);
}
else
{
BluesteinForward(data);
}
}
/// <summary>
/// Cooley–Tukey FFT algorithm,
/// </summary>
public static void IDFT(Complex[] data)
{
var len = (uint)data.Length;
if (IsPowerOf2(len))
{
Radix2Inverse(data);
}
else
{
BluesteinInverse(data);
}
var factor = 1.0 / len;
for (var i = 0; i < len; i++)
{
data[i] *= factor;
}
}
/// <summary>
/// return true if n is power of 2
/// </summary>
public static bool IsPowerOf2(uint n)
=> n < 1u ? false : (n & (n - 1u)) == 0;