POJ - 3268 Silver Cow Party (最短路 dijkstra*2)

本文介绍了一种解决POJ 3268问题的方法,该问题涉及寻找N个农场中每头牛到派对地点并返回所需的最大时间。通过使用两次Dijkstra算法,分别从前向和反向计算最短路径,有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://poj.org/problem?id=3268点击打开链接

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 23722 Accepted: 10830

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2.. M+1: Line  i+1 describes road  i with three space-separated integers:  AiBi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

对于这道题 要求来回 如果暴力肯定超时

可以反向思维 将其他点到达目标点看作是反向的目标点到达其他点

这样一来两遍dijkstra就行 一遍以正方向 一遍反方向


#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
#include<math.h>
#include<limits.h>
#include<vector>
using namespace std;
int n,m,x;
struct xjy
{
    int num;
    int dis;
    bool operator < (const xjy &r) const
    {
        return dis>r.dis;
    }
};
struct remember
{
    int mid1;
    int mid2;
    int mid3;
};
vector<remember> ss;
xjy dis[1111];
xjy mmap[1111][1111];
int book[1111];
int aans[1111];
priority_queue<xjy>q;
void dijkstra(int begin,int end)
{
    xjy mid;
    dis[begin].dis=0;
    dis[begin].num=begin;
    mid=dis[begin];
    q.push(mid);
    while(!q.empty())
    {
        mid=q.top();
        q.pop();
        for(int i=1;i<=n;i++)
        {
            if(!book[i]&&dis[i].dis>=mmap[mid.num][i].dis+dis[mid.num].dis&&mmap[mid.num][i].dis<INT_MAX)
            {
                if(dis[i].dis==mmap[mid.num][i].dis+dis[mid.num].dis)
                    continue;
                dis[i].dis=mmap[mid.num][i].dis+dis[mid.num].dis;
                dis[i].num=i;
                q.push(dis[i]);
            }
        }
    }
}
int main()
{
    
    while(~scanf("%d%d%d",&n,&m,&x))
    {
        int ans=0;
        for(int i=1;i<=1000;i++)
            for(int j=1;j<=1000;j++)
            {
                mmap[i][j].dis=INT_MAX;
            }
        for(int i=1;i<=1000;i++)
        {
            dis[i].dis=INT_MAX;
            book[i]=0;
        }
        for(int i=1;i<=m;i++)
        {
            remember mid;
            scanf("%d%d%d",&mid.mid1,&mid.mid2,&mid.mid3);
            if(mmap[mid.mid1][mid.mid2].dis>mid.mid3)
            {
                mmap[mid.mid1][mid.mid2].dis=mid.mid3;
            }
            ss.push_back(mid);
        }
        dijkstra(x,x);
        for(int i=1;i<=n;i++)
        {
            aans[i]=dis[i].dis;
        }
        
        for(int i=1;i<=1000;i++)
            for(int j=1;j<=1000;j++)
            {
                mmap[i][j].dis=INT_MAX;
            }
        for(int i=1;i<=1000;i++)
        {
            dis[i].dis=INT_MAX;
            book[i]=0;
        }
        for(int i=0;i<m;i++)
        {
            remember mid=ss[i];
            if(mmap[mid.mid2][mid.mid1].dis>mid.mid3)
            {
                mmap[mid.mid2][mid.mid1].dis=mid.mid3;
            }
        }
        dijkstra(x,x);
        ans=0;
        for(int i=1;i<=n;i++)
        {
            aans[i]+=dis[i].dis;
            ans=max(ans,aans[i]);
        }
        cout << ans << endl;
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值