JMM&并发三大特性(2)
可见性
当一个线程修改了共享变量的值,其他线程能够看到修改的值。Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方法来实现可见性的。
如何保证可见性
1、通过volatile关键字保证可见性
2、通过内存屏障保证可见性
3、通过synchronized关键字保证可见性
4、通过Lock保证可见性
5、通过final关键字保证可见性
有序性
即程序执行的顺序按照代码的先后顺序执行。JVM 存在指令重排,所以存在有序性问题。在不影响结果的前提下,会指令重排序(单线程)。
如何保证有序性
1、通过 volatile 关键字保证有序性
2、通过 内存屏障保证有序性。
3、通过 synchronized关键字保证有序性
4、通过 Lock保证有序性。
原子性
一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在 Java 中,对基本数据类型的变量的读取和赋值操作是原子性操作(64位处理器)。不采取任何的原子性保障措施的自增操作并不是原子性的。
如何保证原子性
1、通过 synchronized 关键字保证原子性。
2、通过 Lock保证原子性。
3、通过 CAS保证原子性。
volatile的内存语义
volatile的特性
可见性:对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性(基于这点,我们通过会认为volatile不具备原子性)。volatile仅仅保证对单个volatile变量的读/写具有原子性,而锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。
有序性:对volatile修饰的变量的读写操作前后加上各种特定的内存屏障来禁止指令重排序来保障有序性。
volatile可见性实现原理
JMM内存交互层面实现
volatile修饰的变量的read、load、use操作和assign、store、write必须是连续的,即修改后必须立即同步回主内存,使用时必须从主内存刷新,由此保证volatile变量操作对多线程的可见性。
硬件层面实现
通过lock前缀指令,会锁定变量缓存行区域并写回主内存,这个操作称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据。一个处理器的缓存回写到内存会导致其他处理器的缓存无效。
lock前缀指令的作用
1. 确保后续指令执行的原子性。在Pentium及之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其它处理器暂时无法通过总线访问内存,很显然,这个开销很大。在新的处理器中,Intel使用缓存锁定来保证指令执行的原子性,缓存锁定将大大降低lock前缀指令的执行开销。
2. LOCK前缀指令具有类似于内存屏障的功能,禁止该指令与前面和后面的读写指令重排序。
3. LOCK前缀指令会等待它之前所有的指令完成、并且所有缓冲的写操作写回内存(也就是将store buffer中的内容写入内存)之后才开始执行,并且根据缓存一致性协议,刷新store buffer的操作会导致其他cache中的副本失效。
指令重排序
JVM能根据处理器特性(CPU多级缓存系统、多核处理器等)适当的对机器指令进行重排序,使机器指令能更符合CPU的执行特性,最大限度的发挥机器性能。
在编译器与CPU处理器中都能执行指令重排优化操作:

volatile重排序规则:

volatile禁止重排序场景:
- 第二个操作是volatile写,不管第一个操作是什么都不会重排序
- 第一个操作是volatile读,不管第二个操作是什么都不会重排序
- 第一个操作是volatile写,第二个操作是volatile读,也不会发生重排序
JMM内存屏障插入策略
- 在每个volatile写操作的前面插入一个StoreStore屏障
- 在每个volatile写操作的后面插入一个StoreLoad屏障
- 在每个volatile读操作的后面插入一个LoadLoad屏障
- 在每个volatile读操作的后面插入一个LoadStore屏障
JVM层面的内存屏障
在JSR规范中定义了4种内存屏障:
LoadLoad屏障:(指令Load1; LoadLoad; Load2),在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。
LoadStore屏障:(指令Load1; LoadStore; Store2),在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。
StoreStore屏障:(指令Store1; StoreStore; Store2),在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。
StoreLoad屏障:(指令Store1; StoreLoad; Load2),在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能
由于x86只有store load可能会重排序,所以只有JSR的StoreLoad屏障对应它的mfence或lock前缀指令,其他屏障对应空操作
硬件层内存屏障
硬件层提供了一系列的内存屏障 memory barrier / memory fence(Intel的提法)来提供一致性的能力。拿X86平台来说,有几种主要的内存屏障:
1. lfence,是一种Load Barrier 读屏障
2. sfence, 是一种Store Barrier 写屏障
3. mfence, 是一种全能型的屏障,具备lfence和sfence的能力
4. Lock前缀,Lock不是一种内存屏障,但是它能完成类似内存屏障的功能。Lock会对CPU总线和高速缓存加锁,可以理解为CPU指令级的一种锁。它后面可以跟ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG等指令。
内存屏障有两个能力:
a. 阻止屏障两边的指令重排序
b. 刷新处理器缓存/冲刷处理器缓存
对Load Barrier来说,在读指令前插入读屏障,可以让高速缓存中的数据失效,重新从主内存加载数据;对Store Barrier来说,在写指令之后插入写屏障,能让写入缓存的最新数据写回到主内存。
Lock前缀实现了类似的能力,它先对总线和缓存加锁,然后执行后面的指令,最后释放锁后会把高速缓存中的数据刷新回主内存。在Lock锁住总线的时候,其他CPU的读写请求都会被阻塞,直到锁释放。
不同硬件实现内存屏障的方式不同,Java内存模型屏蔽了这种底层硬件平台的差异,由JVM来为不同的平台生成相应的机器码。
1301

被折叠的 条评论
为什么被折叠?



