deepspeech2 代码之模型构建

本文深入剖析了深度语音识别模型的构建过程,包括DeepSpeech模型的整体框架,MaskConv层对输入进行有效处理,BatchRNN层实现双向循环神经网络,以及最终的全连接层输出。文章详细介绍了各组件的工作原理及其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型构建


模型整体框架如下图所示
可以看到模型主要由以下几个部分构成:
DeepSpeech model

  1. MaskConv
  2. BatchRNN
  3. fc

在这里插入图片描述

model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                           nb_layers=args.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=args.bidirectional,
                           mixed_precision=args.mixed_precision)

1.MaskConv

inputs: batch_size * 1 * mel * length (32 * 1 * 161 * n)
lengths: batch 32
output batch * 32 * 41 * n

class MaskConv(nn.Module):
    def __init__(self, seq_module):
        """
        Adds padding to the output of the module based on the given lengths. This is to ensure that the
        results of the model do not change when batch sizes change during inference.
        Input needs to be in the shape of (BxCxDxT)
        :param seq_module: The sequential module containing the conv stack.
    	
        """
        super(MaskConv, self).__init__()
        self.seq_module = seq_module

    def forward(self, x, lengths):
        """
        :param x: The input of size BxCxDxT
        :param lengths: The actual length of each sequence in the batch
        :return: Masked output from the module
        """
        for module in self.seq_module:
            x = module(x)
            mask = torch.ByteTensor(x.size()).fill_(0)
            if x.is_cuda:
                mask = mask.cuda()
            for i, length in enumerate(lengths):
                length = length.item()
                if (mask[i].size(2) - length) > 0:
                    mask[i].narrow(2, length, mask[i].size(2) - length).fill_(1)
            x = x.masked_fill(mask, 0)
        return x, lengths
self.conv = MaskConv(nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=(41, 11), stride=(2, 2), padding=(20, 5)),
            nn.BatchNorm2d(32),
            nn.Hardtanh(0, 20, inplace=True),
            nn.Conv2d(32, 32, kernel_size=(21, 11), stride=(2, 1), padding=(10, 5)),
            nn.BatchNorm2d(32),
            nn.Hardtanh(0, 20, inplace=True)
        ))

在这里插入图片描述

2. BatchRNN

class BatchRNN(nn.Module):
    def __init__(self, input_size, hidden_size, rnn_type=nn.LSTM, bidirectional=False, batch_norm=True):
        super(BatchRNN, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bidirectional = bidirectional
        self.batch_norm = SequenceWise(nn.BatchNorm1d(input_size)) if batch_norm else None
        self.rnn = rnn_type(input_size=input_size, hidden_size=hidden_size,
                            bidirectional=bidirectional, bias=True)
        self.num_directions = 2 if bidirectional else 1

    def flatten_parameters(self):
        self.rnn.flatten_parameters()

    def forward(self, x, output_lengths):
        if self.batch_norm is not None:
            x = self.batch_norm(x)
        x = nn.utils.rnn.pack_padded_sequence(x, output_lengths)
        x, h = self.rnn(x)
        x, _ = nn.utils.rnn.pad_packed_sequence(x)
        if self.bidirectional:
            x = x.view(x.size(0), x.size(1), 2, -1).sum(2).view(x.size(0), x.size(1), -1)  # (TxNxH*2) -> (TxNxH) by sum
        return x
        
class SequenceWise(nn.Module):
    def __init__(self, module):
        """
        Collapses input of dim T*N*H to (T*N)*H, and applies to a module.
        Allows handling of variable sequence lengths and minibatch sizes.
        :param module: Module to apply input to.
        """
        super(SequenceWise, self).__init__()
        self.module = module

    def forward(self, x):
        t, n = x.size(0), x.size(1)
        x = x.view(t * n, -1)
        x = self.module(x)
        x = x.view(t, n, -1)
        return x

    def __repr__(self):
        tmpstr = self.__class__.__name__ + ' (\n'
        tmpstr += self.module.__repr__()
        tmpstr += ')'
        return tmpstr

rnn = BatchRNN(input_size=rnn_input_size, hidden_size=rnn_hidden_size, rnn_type=rnn_type,
               bidirectional=bidirectional, batch_norm=False)
rnns.append(('0', rnn))
for x in range(nb_layers - 1):
	rnn = BatchRNN(input_size=rnn_hidden_size, hidden_size=rnn_hidden_size, rnn_type=rnn_type,
	               bidirectional=bidirectional)
	rnns.append(('%d' % (x + 1), rnn))
self.rnns = nn.Sequential(OrderedDict(rnns))

在这里插入图片描述

3. FC

fully_connected = nn.Sequential(
            nn.BatchNorm1d(rnn_hidden_size),
            nn.Linear(rnn_hidden_size, num_classes, bias=False)
        )
self.fc = nn.Sequential(
    SequenceWise(fully_connected),)
x = self.fc(x)
x = x.transpose(0, 1)
# identity in training mode, softmax in eval mode
x = self.inference_softmax(x)
return x, output_lengths

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值