CBAM: Convolutional Block Attention Module_pytorch实现

CBAM: Convolutional Block Attention Module

CBAM依然采用了block的形式,但是在每一个block上进行更加细致的设计来使得网络的结构更加合理有效。

结构

在这里插入图片描述

作者采用了类似于人类attention,也就是注意力的机制,对一个特征矩阵进行重新构造。注意力机制就是采用一种可以学习的方式来对特征重新赋予权重,权重高的特征就是注意力的注意点.

Convolutional Block Attention Module

上面的结构图可以看到,一个特征经过一个Channel Attention Module和一个Spatial Attention Module被重新构造,输出了一个精修过的特征矩阵。

通道注意力

首先是通道注意力,我们知道一张图片经过几个卷积层会得到一个特征矩阵,这个矩阵的通道数就是卷积层核的个数。那么,一个常见的卷积核经常达到1024,2048个,并不是每个通道都对于信息传递非常有用了的。因此,通过对这些通道进行过滤,也就是注意,来得到优化后的特征.
主要思路就是:增大有效通道权重,减少无效通道的权重.
公式如下:
M c ( F ) = σ ( M L P ( AvgPool ( F ) ) + M L P ( Max ⁡ Pool ⁡ ( F ) ) ) \mathbf{M}_{\mathbf{c}}(\mathbf{F})=\sigma(M L P(\text {AvgPool}(\mathbf{F}))+M L P(\operatorname{Max} \operatorname{Pool}(\mathbf{F}))) Mc(F)=σ(MLP(AvgPool(F))+MLP(MaxPool(F)))
= σ ( W 1 ( W o ( F a v g c ) ) + W 1 ( W 0 ( F max ⁡ c ) ) ) =\sigma\left(\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{o}}\left(\mathbf{F}_{\mathbf{a v g}}^{\mathbf{c}}\right)\right)+\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{0}}\left(\mathbf{F}_{\max }^{\mathbf{c}}\right)\right)\right) =σ(W1(Wo(Favgc))+W1(W0(Fmaxc)))

通道注意力结构如下:
在这里插入图片描述

在通道维度上进行全局的pooling操作,再经过同一个MLP得到权重,相加作为最终的注意力向量(权重)。
这里非常像SENet,SENet在很多论文中都被证实对效果有提升,这里的区别是,SENet采用的是平均值的pooling,这篇论文又加入了最大值pooling。作者在论文中,通过对比实验,证实max pooling提高了效果。
注意这里的MLP的中间层较小,这个可能有助于信息的整合。

空间注意力

论文中,作者认为通道注意力关注的是:what,然而空间注意力关注的是:Where。
公式如下:
M s ( F ) = σ ( f 7 × 7 ( [ Avg ⁡ P o o l ( F ) ; MaxPool ⁡ ( F ) ] ) ) \mathbf{M}_{\mathbf{s}}(\mathbf{F})=\sigma\left(f^{7 \times 7}([\operatorname{Avg} P o o l(\mathbf{F}) ; \operatorname{MaxPool}(\mathbf{F})])\right) Ms(F)=σ(f7×7([AvgPool(F);MaxPool(F)]))
= σ ( f 7 × 7 ( [ F a v g s ; F m a x s ] ) ) =\sigma\left(f^{7 \times 7}\left(\left[\mathbf{F}_{\mathrm{avg}}^{\mathrm{s}} ; \mathbf{F}_{\mathrm{max}}^{\mathrm{s}}\right]\right)\right) =σ(f7×7([Favgs;Fmaxs]))

空间注意力结构图如下:
在这里插入图片描述

同样使用了avg-pooling和max-pooling来对信息进行评估,使用一个7*7的卷积来进行提取。
注意权重都通过sigmoid来进行归一化。

下图是一个将论文的方法应用到ResNet的例子:

在这里插入图片描述

将模型应用到每一个ResNet block的输出上。

Pytorch实现CBAM

此处代码是将其应用到resnext,可以在github链接查看代码实现

# -*-coding:utf-8-*-
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


__all__ = ['cbam_resnext29_8x64d', 'cbam_resnext29_16x64d']


class BasicConv(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size,
                              stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5,
                                 momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)


class ChannelGate(nn.Module):
    def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
        super(ChannelGate, self).__init__()
        self.gate_channels = gate_channels
        self.mlp = nn.Sequential(
            Flatten(),
            nn.Linear(gate_channels, gate_channels // reduction_ratio),
            nn.ReLU(),
            nn.Linear(gate_channels // reduction_ratio, gate_channels)
        )
        self.pool_types = pool_types

    def forward(self, x):
        channel_att_sum = None
        for pool_type in self.pool_types:
            if pool_type == 'avg':
                avg_pool = F.avg_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
                channel_att_raw = self.mlp(avg_pool)
            elif pool_type == 'max':
                max_pool = F.max_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
                channel_att_raw = self.mlp(max_pool)
            elif pool_type == 'lp':
                lp_pool = F.lp_pool2d(
                    x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
                channel_att_raw = self.mlp(lp_pool)
            elif pool_type == 'lse':
                # LSE pool only
                lse_pool = logsumexp_2d(x)
                channel_att_raw = self.mlp(lse_pool)

            if channel_att_sum is None:
                channel_att_sum = channel_att_raw
            else:
                channel_att_sum = channel_att_sum + channel_att_raw

        scale = torch.sigmoid(channel_att_sum).unsqueeze(
            2).unsqueeze(3).expand_as(x)
        return x * scale


def logsumexp_2d(tensor):
    tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
    s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
    outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
    return outputs


class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)


class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(
            kernel_size-1) // 2, relu=False)

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = torch.sigmoid(x_out)  # broadcasting
        return x * scale


class CBAM(nn.Module):
    def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False):
        super(CBAM, self).__init__()
        self.ChannelGate = ChannelGate(
            gate_channels, reduction_ratio, pool_types)
        self.no_spatial = no_spatial
        if not no_spatial:
            self.SpatialGate = SpatialGate()

    def forward(self, x):
        x_out = self.ChannelGate(x)
        if not self.no_spatial:
            x_out = self.SpatialGate(x_out)
        return x_out


class Bottleneck(nn.Module):

    def __init__(self, in_channels, out_channels, stride, cardinality, base_width, expansion):

        super(Bottleneck, self).__init__()
        width_ratio = out_channels / (expansion * 64.)
        D = cardinality * int(base_width * width_ratio)

        self.relu = nn.ReLU(inplace=True)
        self.cbam_module = CBAM(out_channels)

        self.conv_reduce = nn.Conv2d(
            in_channels, D, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn_reduce = nn.BatchNorm2d(D)
        self.conv_conv = nn.Conv2d(
            D, D, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn = nn.BatchNorm2d(D)
        self.conv_expand = nn.Conv2d(
            D, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn_expand = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if in_channels != out_channels:
            self.shortcut.add_module('shortcut_conv',
                                     nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0,
                                               bias=False))
            self.shortcut.add_module(
                'shortcut_bn', nn.BatchNorm2d(out_channels))

    def forward(self, x):
        out = self.conv_reduce.forward(x)
        out = self.relu(self.bn_reduce.forward(out))
        out = self.conv_conv.forward(out)
        out = self.relu(self.bn.forward(out))
        out = self.conv_expand.forward(out)
        out = self.bn_expand.forward(out)

        residual = self.shortcut.forward(x)

        out = self.cbam_module(out) + residual
        out = self.relu(out)
        return out


class SeResNeXt(nn.Module):
    def __init__(self, cardinality, depth, num_classes, base_width, expansion=4):
        super(SeResNeXt, self).__init__()
        self.cardinality = cardinality
        self.depth = depth
        self.block_depth = (self.depth - 2) // 9
        self.base_width = base_width
        self.expansion = expansion
        self.num_classes = num_classes
        self.output_size = 64
        self.stages = [64, 64 * self.expansion, 128 *
                       self.expansion, 256 * self.expansion]

        self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False)
        self.bn_1 = nn.BatchNorm2d(64)
        self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1)
        self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2)
        self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2)
        self.fc = nn.Linear(self.stages[3], num_classes)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight.data)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def block(self, name, in_channels, out_channels, pool_stride=2):
        block = nn.Sequential()
        for bottleneck in range(self.block_depth):
            name_ = '%s_bottleneck_%d' % (name, bottleneck)
            if bottleneck == 0:
                block.add_module(name_, Bottleneck(in_channels, out_channels, pool_stride, self.cardinality,
                                                   self.base_width, self.expansion))
            else:
                block.add_module(name_,
                                 Bottleneck(out_channels, out_channels, 1, self.cardinality, self.base_width,
                                            self.expansion))
        return block

    def forward(self, x):
        x = self.conv_1_3x3.forward(x)
        x = F.relu(self.bn_1.forward(x), inplace=True)
        x = self.stage_1.forward(x)
        x = self.stage_2.forward(x)
        x = self.stage_3.forward(x)
        x = F.avg_pool2d(x, 8, 1)
        x = x.view(-1, self.stages[3])
        return self.fc(x)


def cbam_resnext29_8x64d(num_classes):
    return SeResNeXt(cardinality=8, depth=29, num_classes=num_classes, base_width=64)


def cbam_resnext29_16x64d(num_classes):
    return SeResNeXt(cardinality=16, depth=29, num_classes=num_classes, base_width=64)

<think>好的,我需要回答用户关于Convolutional Block Attention Module (CBAM)的问题。首先,用户可能想了解CBAM的基本概念、结构、实现和应用。根据用户的提示,他们提到了ECCV2018的论文和PyTorch实现,所以需要结合这些信息。 首先,我应该回顾CBAM的结构。CBAM包含通道注意力和空间注意力两个部分。通道注意力模块使用平均池化和最大池化,然后通过多层感知机(MLP)生成通道权重。空间注意力模块则是在通道维度上进行池化,然后通过卷积层生成空间权重。两个模块依次应用,增强特征图的表达能力。 接下来是PyTorch实现部分。用户提供的参考是PyTorch实现CBAM,所以需要给出一个代码示例。需要确保代码结构正确,符合论文描述。比如,通道注意力中的MLP层,使用1x1卷积代替全连接层,这在图像处理中更常见。空间注意力模块中的卷积层使用7x7的滤波器,这是论文中的参数。 然后,关于使用方式,用户可能想知道如何将CBAM集成到现有的网络中,比如ResNet。需要说明CBAM可以加在卷积块之后,例如在残差块的卷积层之后插入CBAM模块。此外,应用场景如分类、检测、分割等,都需要举例说明,说明注意力机制如何提升模型性能。 还需要检查是否需要补充其他信息,比如CBAM的优势,如轻量级、即插即用,以及可能的影响因素,比如在不同层使用CBAM的效果差异。同时,确保回答符合用户的要求,如使用中文、数学公式的正确格式,以及生成相关问题。 最后,生成的相关问题需要覆盖原理、实现细节、应用比较和优化等方面,帮助用户进一步探索。确认引用格式正确,末尾添加引用标识[^1]。整个过程需要结构清晰,分点说明,代码示例正确,并且语言简洁明了。</think>### Convolutional Block Attention Module (CBAM) #### 1. 核心原理 CBAM是一种轻量级注意力模块,通过**通道注意力**和**空间注意力**的级联设计增强卷积特征。其数学表达为: $$ \begin{aligned} \text{通道注意力权重} & : \mathbf{M}_c(F) = \sigma(MLP(AvgPool(F)) + MLP(MaxPool(F))) \\ \text{空间注意力权重} & : \mathbf{M}_s(F) = \sigma(f^{7\times7}([AvgPool(F); MaxPool(F)])) \end{aligned} $$ 其中$F$为输入特征图,$\sigma$为sigmoid函数,$f^{7\times7}$为7x7卷积操作。 #### 2. PyTorch实现代码 ```python import torch import torch.nn as nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc = nn.Sequential( nn.Conv2d(in_planes, in_planes//ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_planes//ratio, in_planes, 1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc(self.avg_pool(x)) max_out = self.fc(self.max_pool(x)) return self.sigmoid(avg_out + max_out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) combined = torch.cat([avg_out, max_out], dim=1) return self.sigmoid(self.conv(combined)) class CBAM(nn.Module): def __init__(self, in_planes): super().__init__() self.ca = ChannelAttention(in_planes) self.sa = SpatialAttention() def forward(self, x): x = self.ca(x) * x # 通道注意力 x = self.sa(x) * x # 空间注意力 return x ``` #### 3. 使用方式 1. **集成到CNN架构**:可插入ResNet等网络的残差块中: ```python class ResBlock_CBAM(nn.Module): def __init__(self, in_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels, in_channels, 3, padding=1) self.cbam = CBAM(in_channels) self.conv2 = nn.Conv2d(in_channels, in_channels, 3, padding=1) def forward(self, x): residual = x x = F.relu(self.conv1(x)) x = self.cbam(x) x = self.conv2(x) x += residual return F.relu(x) ``` 2. **应用场景**: - 图像分类:在ResNet中插入CBAM模块可使ImageNet Top-1准确率提升约1.5%[^1] - 目标检测:增强目标区域的特征响应 - 语义分割:改善边缘细节特征表示
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cpp编程小茶馆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值